Journal of Materials Science

, Volume 42, Issue 14, pp 5544–5550 | Cite as

Influences of MonoSilanolIsobutyl-POSS on thermal stability of polymethylsilxoane

  • Y. R. Liu
  • Y. D. HuangEmail author
  • L. Liu


Incorporation of polyhedral oligomeric silsesquioxane (POSS) molecules into polymer matrix resulted in increased used and decomposition temperatures. Polymethylsiloxane (PMS)/MonoSilanolIsobutyl-POSS hybrid copolymers containing various proportions of MonoSilanolIsobutyl-POSS were prepared. The structures and thermal properties of the obtained products were characterized with Gel Permeation Chromatography (GPC), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential thermogravimetric analysis (DTG) and X-ray photoelectron spectroscopy (XPS). The GPC and FTIR spectra suggested successful bonding of MonoSilanolIsobutyl-POSS and PMS. TGA, DTG and XPS analysis revealed that MonoSilanoIsobutyl-POSS reinforced PMS are thermally more stable than the original PMS, primarily by the elimination of SiOH effects, the nanoreinforcement effect of POSS, the retardation of polymer chain motion and the formation of SiO2 protective layer.


Poss High Molecular Weight Polymer Methyltrimethoxy Silane SiOH Group Hybrid Copolymer 



The authors would like to thank the National Natural Science Foundation of China (No. 50333030) and the Natural Science Foundation of Heilongjiang for Distinguished Young Scholars (No. JC04-12) for financial support.


  1. 1.
    Sun JT, Huang YD, Cao HL, Gong GF (2004) Polym Degrad Stab 85(1):725CrossRefGoogle Scholar
  2. 2.
    Sun JT, Huang YD, Cao HL, Gong GF (2006) Polym Degrad Stab 91(2):339CrossRefGoogle Scholar
  3. 3.
    Jovanovic JD, Govedarica MN (1998) Polym Degrad Stab 61:87CrossRefGoogle Scholar
  4. 4.
    Keijman K (1997) Oil Gas Eur Mag 23(3):38Google Scholar
  5. 5.
    Mathivanan L, Arof AK (1998) Anti-Corros Methods Mater 45(6):403CrossRefGoogle Scholar
  6. 6.
    Torre L, Kenny JM, Maezzoli AM (1998) J Mater Sci 33(12):3137CrossRefGoogle Scholar
  7. 7.
    Grassie N, Murray EJ, Holmes PA (1984) Polym Degrad Stab 6(2):95CrossRefGoogle Scholar
  8. 8.
    Dire S, Ceccato R, Babonneau F (2005) J Sol Gel Sci Technol 34(1):53CrossRefGoogle Scholar
  9. 9.
    Berrod G, Vidal A, Papirer E, Donnet JB (1981) J Appl Polym Sci 26(3):833CrossRefGoogle Scholar
  10. 10.
    Dickstein WH, Siemens RL, Hadziioannou E (1990) Thermochim Acta 166:137CrossRefGoogle Scholar
  11. 11.
    Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermochim Acta 430(1–2):155CrossRefGoogle Scholar
  12. 12.
    Parl PS, Schwam D, Litt MH (1995) J Mater Sci 30(2):308CrossRefGoogle Scholar
  13. 13.
    Lichtenhan JD, Yoshiko AO, Michael JC (1995) Macromolecules 28(24):8435CrossRefGoogle Scholar
  14. 14.
    Haddad TS, Lichtenhan JD (1996) Macromolecules 29(22):7302CrossRefGoogle Scholar
  15. 15.
    Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Macromolecules 32(4):1194CrossRefGoogle Scholar
  16. 16.
    Tsuchida A, Bolln C, Sernetz FG, Frey H, Mulhaupt R (1997) Macromolecules 30(10):2818CrossRefGoogle Scholar
  17. 17.
    Fina A, Tabuani D, Frache A, Camino G (2005) Polymer 46(19):7855CrossRefGoogle Scholar
  18. 18.
    Lee A, Lichtenhan JD (1998) Macromolecules 31(15):4970CrossRefGoogle Scholar
  19. 19.
    Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Chem Mater 8(6):1250CrossRefGoogle Scholar
  20. 20.
    Lichtenhan JD, Vu NQ, Carter JA, Frank WG, Feher J (1993) Macromolecules 26(8):2141CrossRefGoogle Scholar
  21. 21.
    Haddad TS, Oviatt HW, Schwab JJ, Mather PT, Chaffee KP, Lichtenhan JD (1998) Am Chem Soc Polym Prepr Div Polym Chem 39(1):611Google Scholar
  22. 22.
    Shockey E, Jones PF, Lichtenhan JD (1995) Am Chem Soc Polym Prepr Div Polym Chem 36(1):391Google Scholar
  23. 23.
    Pan GR, Mark JE, Schaefer DW (2003) J Polym Sci, Part B: Polym Phys 41(24):3314CrossRefGoogle Scholar
  24. 24.
    Li HY, Yu DS, Zhang JY (2005) Polymer 46(14):5317CrossRefGoogle Scholar
  25. 25.
    Liu WC, Yu YY, Chen WC (2004) J Appl Polym Sci 91(4):2653CrossRefGoogle Scholar
  26. 26.
    Whitesides TH, Ross DS (1995) J Colloid Interface Sci 169(1):48CrossRefGoogle Scholar
  27. 27.
    Thomas TH, Kendrick TC (1969) J Polym Sci Part A-2: Polym Phys 7(3):537CrossRefGoogle Scholar
  28. 28.
    Grassie N, Zulfiqar M (1978) J Polym Sci Part A: Polym Chem 16(7):1563Google Scholar
  29. 29.
    Schnetder O (1998) Thermochim Acta 134:269CrossRefGoogle Scholar
  30. 30.
    Sohoni GB, Mark JE (1992) J Appl Polym Sci 45(10):1763CrossRefGoogle Scholar
  31. 31.
    Ni Y, Zheng SA (2004) Chem Mater 16(24):5141CrossRefGoogle Scholar
  32. 32.
    Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) J Am Chem Soc 123(46):11420CrossRefGoogle Scholar
  33. 33.
    Choi J, Yee AF, Laine RM (2004) Macromolecules 37(9):3267CrossRefGoogle Scholar
  34. 34.
    Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) J Polym Sci, Part B: Polym Phys 36(11):1857CrossRefGoogle Scholar
  35. 35.
    Gonzalez RI, Phillips SH, Hoflund GB (2000) J Spacecr Rockets 37(4):463CrossRefGoogle Scholar
  36. 36.
    Toth A, Bertoti I, Blazso M, Banhegyi G, Bognar A (1994) Appl Polym Sci 52(9):1293CrossRefGoogle Scholar
  37. 37.
    Kashiwagi T, Gilman JW, Butler KM, Harris RH, Shields JR, Asano A 2000 Fire Mater 24(6):277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Polymer Materials and Engineering Division, Department of Applied Chemistry, Faculty of ScienceHarbin Institute of TechnologyHarbinP.R. China

Personalised recommendations