Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6018–6026 | Cite as

Beach sand from Cancun Mexico: a natural macro- and mesoporous material

  • Hui Chen
  • Jinhai Wang
  • Zia ur Rahman
  • James G. Worden
  • Xiong Liu
  • Qiu Dai
  • Qun Huo
Article

Abstract

Sand particles from Cancun, Mexico were studied using a number of advanced spectroscopic and microscopic techniques. The main chemical composition of sand particles was confirmed to be calcium carbonate by X-ray photoelectron spectroscopy and IR spectroscopic analysis. X-ray diffraction analysis revealed that the sand particles are aragonite, which has an Orthorhombic—Dipyramidal crystal structure. The morphological study of the sand particles by scanning electron microscopy and transmission electron microscopy revealed the presence of a highly porous channel-like structure in the sand particles. The sorption isotherm indicates that Cancun sand is a mesoporous material. The specific surface area of Cancun sand was determined to be 2.259 m2/g by BET measurement, which is significantly higher than that of Florida sand and other forms of natural aragonite and calcite. Furthermore, it was found that the porous sand particles can adsorb gold nanoparticles of the size of a few nanometers very efficiently. The distribution of gold nanoparticles demonstrated a channel-like porous inner structure of the sand particles. We also prepared a polymer composite material by mixing the sand particles with a poly(methyl methacrylate) matrix. SEM analysis of the composite materials showed a good interfacial adhesion between sand particles and polymer matrix. These results suggest that Cancun sand, as a natural macro- and mesoporous material, may find promising applications in filtration, pollution control, composite materials and biomaterials development.

Keywords

PMMA Gold Nanoparticles Aragonite Sand Particle Sand Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We want to thank Dr. Joseph Brennan for collecting the sand samples for this project. Partial work reported here was supported by National Science Foundation CAREER award (DMR 0552295) and National Science Foundation NIRT award (DMI 0506531).

Supplementary material

References

  1. 1.
    Davis ME (2002) Nature 417:813CrossRefGoogle Scholar
  2. 2.
    Zhao XS, Bao XY, Guo W, Lee FY (2006) Mater Today 9:32CrossRefGoogle Scholar
  3. 3.
    Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) J Biochem Biophys Methods 50:253CrossRefGoogle Scholar
  4. 4.
    Torgersen AN, Jorgensen SW (2006) US Patent 2006097221Google Scholar
  5. 5.
    Sapelkin AV, Bayliss SC, Unal B, Charalambou A (2006) Biomaterials 27:842CrossRefGoogle Scholar
  6. 6.
    Saupe GB, Zhao Y, Bang J, Yesu NR, Carballo GA, Ordonez R, Bubphamala T (2005) Microchem J 81:156CrossRefGoogle Scholar
  7. 7.
    Gottlieb L (2005) Reactive Func Poly 63:107CrossRefGoogle Scholar
  8. 8.
    Teng X, Liang X, Rahman S, Yang H (2005) Adv Mater 17:2237CrossRefGoogle Scholar
  9. 9.
    Palmqvist AEC, Iversen BB, Zanghellini E, Behm M, Stucky GD (2004) Angew Chem Int Ed 43:700CrossRefGoogle Scholar
  10. 10.
    Corma A, Diaz-Cabanas MJ, Martinez-Triguero J (2002) Nature 418:514CrossRefGoogle Scholar
  11. 11.
    Corma A, Nemeth L, Renz M, Valencia S (2001) Nature 412:423CrossRefGoogle Scholar
  12. 12.
    Stein A (2003) Adv Mater 15:763CrossRefGoogle Scholar
  13. 13.
    Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K (2003) J Am Chem Soc 126:32CrossRefGoogle Scholar
  14. 14.
    Millward AR, Yaghi OM (2005) J Am Chem Soc 127:17998CrossRefGoogle Scholar
  15. 15.
    Manning DAC (1995) Introduction to industrial minerals. Chapman & Hall, LondonGoogle Scholar
  16. 16.
    Zhao Y, Cao D, Liu L, Jin W (2006) Water Environ Res 78:392CrossRefGoogle Scholar
  17. 17.
    Christensen AN, Lundtoft B, Madsen IC (2001) J Am Chem Soc 84:878Google Scholar
  18. 18.
    Ai-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN (2003) J Environ Manage 69:229CrossRefGoogle Scholar
  19. 19.
    Nyer K (1992) Ground water treatment technology, 2nd edn. Van Nostrand ReinholdGoogle Scholar
  20. 20.
    Rahmana MA, Ahsana S, Kanecoa S, Katsumataa H, Suzukib T, Ohtaa K (2005) J Environ Manage 74:107CrossRefGoogle Scholar
  21. 21.
    Katti KS (2004) Colloids Surf B 39:133Google Scholar
  22. 22.
    Ratner MA, Ratner D, Ratner M (2003) Nanotechnology: a gentle introduction to the next big idea. Prentice Hall PTR, New JerseyGoogle Scholar
  23. 23.
    Tucker ME, Wright UP (1990) Carbonate sedimentology. Blackwell Science Ltd., p 100Google Scholar
  24. 24.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer CorporationGoogle Scholar
  25. 25.
    Williams DB, Carter CB (1996) Transmission electron microscopy, vol 4. Plenum Press, New York, p 600Google Scholar
  26. 26.
    Giannuzzi LA, Drown JL, Brown SR, Irwin RB, Stevie FA (1997) Mater Res Soc Symp Proc 480:19Google Scholar
  27. 27.
    Giannuzzi LA, Drown JL, Brown SR, Irwin RB, Stevie FA (1998) Micros Res Tech 41:285CrossRefGoogle Scholar
  28. 28.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  29. 29.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  30. 30.
    Worden JG, Dai Q, Shaffer A, Huo Q (2004) Chem Mater 16:3748CrossRefGoogle Scholar
  31. 31.
    Chakrabarty D, Mahapatra SJ (1999) Mater Chem 9:2953CrossRefGoogle Scholar
  32. 32.
    Christie AB, Lee J, Sutherland I, Walls JM (1983) Appl Surf Sci 15:224CrossRefGoogle Scholar
  33. 33.
    Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA (1982) J Vac Sci Tech 21:933CrossRefGoogle Scholar
  34. 34.
    Sing KSW, Everett DHW, Hall HRA, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603Google Scholar
  35. 35.
    Slater L, Ntarlagiannis D, Wishart D (2006) Geophysics 71:A1CrossRefGoogle Scholar
  36. 36.
    Zwingmann N, Mito S, Sorai M, Ohsumi T (2005) Oil Gas Sci Tech Rev IFP 60:249CrossRefGoogle Scholar
  37. 37.
    Wypych G (2000) Handbook of fillers—a definitive user’s guide and databook, 2nd edn. ChemTec Publishing, p 255Google Scholar
  38. 38.
    Thommers M, Smarsly B, Groenewolt M, Ravikovitch PI, Neimark AV (2006) Langmuir 22:756CrossRefGoogle Scholar
  39. 39.
    Coelfen HCO (2003) Colloid Interf Sci 8:23CrossRefGoogle Scholar
  40. 40.
    Rohleder J, Kroker E, Tegethoff FW (2001) Calcium carbonate: from the cretaceous period into the 21st century. Birkhauser Verlag, Seitzerland, p 14Google Scholar
  41. 41.
    Shindo H, Kwak M (2005) Phys Chem Chem Phys 7:691CrossRefGoogle Scholar
  42. 42.
    Daniel M-C, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  43. 43.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Comm:801Google Scholar
  44. 44.
    Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Langmuir 14:7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hui Chen
    • 1
  • Jinhai Wang
    • 1
  • Zia ur Rahman
    • 2
  • James G. Worden
    • 1
  • Xiong Liu
    • 1
  • Qiu Dai
    • 1
  • Qun Huo
    • 1
  1. 1.Nanoscience Technology Center, Department of Chemistry, Department of Mechanical Materials, and Aerospace EngineeringUniversity of Central FloridaOrlandoUSA
  2. 2.Materials Characterization Facility, Advanced Materials Processing & Analysis Center (AMPAC)University of Central FloridaOrlandoUSA

Personalised recommendations