Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7696–7703 | Cite as

Coincidence-site lattices as rational approximants to irrational twins

  • S. Ranganathan
  • A. K. Srivastava
  • E. A. Lord
Article

Abstract

It is well known that sequences of crystals with Mackay icosahedral motif and increasing lattice parameters exist converging to the icosahedral quasicrystal in the limit. They are known as rational approximants. It has also been demonstrated that it is possible to create icosahedral symmetry by irrational twins involving five variants by 72° rotations around an irrational axis [τ 1 0] or an irrational angle of 44.48° around a rotation axis [1 1 1]. These twinned crystals do not share a coincidence site lattice. In this paper, it is demonstrated that the above twinning relationship arises in the limit of a sequence of coincidence site lattices starting with the cubic twins with Σ = 3 and extending through Σ = 7, 19, 49, 129, 337, …, ∞ created by rotation around [1 1 1] axis. It is also noted that the boundaries of higher CSL values (Σ > 7) are composed of a combination of structural units from Σ = 3 and Σ = 7 boundaries.

Keywords

Coincidence Site Lattice Symmetry Operation Icosahedral Symmetry Icosahedral Quasicrystal Irrational Line 

Notes

Acknowledgements

The authors are grateful to Professor K. Chattopadhyay and Prof A L Mackay for valuable discussions. Figure 1 is after a discussion with Prof K F Kelton.

References

  1. 1.
    Brandon DG, Ralph B, Ranganathan S, Wald MS (1964) Acta Metall 12:813CrossRefGoogle Scholar
  2. 2.
    Ranganathan S (1966) Acta Cryst 21:197CrossRefGoogle Scholar
  3. 3.
    Bishop GH, Chalmers B (1968) Scr Metall 2:133CrossRefGoogle Scholar
  4. 4.
    Sutton AP, Vitek V (1983) Philos Trans R Soc London Ser 309 A:1CrossRefGoogle Scholar
  5. 5.
    Christian JW, Mahajan S (1995) Prog Mater Sci 39:1CrossRefGoogle Scholar
  6. 6.
    Grimmer H, Nespolo M (2006) Z Kristallogr 221:28Google Scholar
  7. 7.
    Bendersky LA, Cahn JW, Gratias D (1989) Philos Mag 60B:837CrossRefGoogle Scholar
  8. 8.
    Pauling L (1987) Phys Rev Lett 58:365CrossRefGoogle Scholar
  9. 9.
    Pond RC, Bollmann W (1979) Philos Trans R Soc London Ser 292 A:449CrossRefGoogle Scholar
  10. 10.
    Friedel G, in “Lecons de cristallographie” (Paris 1926, 2nd ed. 1964, Libraire Sci. A. Blanhard, Paris, 1964)Google Scholar
  11. 11.
    Koskenmaki DC, Chen HS, Rao KV (1986) Phys Rev 33 B:5328CrossRefGoogle Scholar
  12. 12.
    Mandal RK, Sastry GVS, Lele S, Ranganathan S (1991) Scr Metall Mater 25:1477CrossRefGoogle Scholar
  13. 13.
    Srivastava AK, Ranganathan S (1992) Scr Metall Mater 27:1241CrossRefGoogle Scholar
  14. 14.
    Lalla NP, Tiwari RS, Srivastava ON (1992) J Mater Res 7:53CrossRefGoogle Scholar
  15. 15.
    Singh A, Srivastava AK, Ranganathan S (1993) In: Krishnan KM (ed) Microstructure of materials. San Francisco Press, CA, p 152Google Scholar
  16. 16.
    Srivastava AK, Ranganathan S (1996) Acta Mater 44:2935CrossRefGoogle Scholar
  17. 17.
    Srivastava AK, Ranganathan S (1997) Prog Cryst Growth Charact 34:251CrossRefGoogle Scholar
  18. 18.
    Srivastava AK, Ranganathan S (2001) J Mater Res 16:2103CrossRefGoogle Scholar
  19. 19.
    Bendersky LA, Cahn JM, J Mater Sci (2006, to be published)Google Scholar
  20. 20.
    Ashby MF, Spaepen F, Williams S (1978) Acta Metall 26:1647CrossRefGoogle Scholar
  21. 21.
    Pond RC, Vitek V, Smith DA (1979) Acta Cryst 35A:689CrossRefGoogle Scholar
  22. 22.
    Paidar V (1987) Acta Metall 35:2035CrossRefGoogle Scholar
  23. 23.
    Dahmen U, Hetherington CJD, O’kee MA, Westmacott KH, Mills MJ, Daw MS, Vitek V (1990) Philos Mag Lett 62:327CrossRefGoogle Scholar
  24. 24.
    Mills MJ (1993) Mater Sci Eng 166 A:35CrossRefGoogle Scholar
  25. 25.
    Paidar V, Erhart J (1993) Interface Sci 1:115CrossRefGoogle Scholar
  26. 26.
    Shechtman D, Blech I, Gratias D, Cahn JW (1984) Phys Rev Lett 53:1951CrossRefGoogle Scholar
  27. 27.
    Chattopadhyay K, Ranganathan S, Subbanna GN, Thangaraj N (1985) Scr Metall 19:767CrossRefGoogle Scholar
  28. 28.
    Bendersky LA (1985) Phys Rev Lett 55:1461CrossRefGoogle Scholar
  29. 29.
    Goldman AI, Kelton KF (1993) Rev Mod Phys 65:213CrossRefGoogle Scholar
  30. 30.
    Chattopadhyay K, Lele S, Thangaraj N, Ranganathan S (1987) Acta Metall 35:727CrossRefGoogle Scholar
  31. 31.
    Lord E, Ranganathan S, Anandh Subrasmaniam (2002) Phil Mag 62:255Google Scholar
  32. 32.
    Cooper M, Robinson K (1966) Acta Cryst 20:614CrossRefGoogle Scholar
  33. 33.
    Bergman G, Waugh JLT, Pauling L (1957) Acta Cryst 10:254CrossRefGoogle Scholar
  34. 34.
    Mackay AL (1962) Acta Cryst 15:916CrossRefGoogle Scholar
  35. 35.
    Rivier N (1986) J Phys (Paris) 47:C3-299CrossRefGoogle Scholar
  36. 36.
    Sutton AP (1988) Acta Metall 36:1291CrossRefGoogle Scholar
  37. 37.
    Sutton AP (1992) Prog Mater Sci 36:167CrossRefGoogle Scholar
  38. 38.
    Gratias D, Thalal A (1988) Philos Mag Lett 57:63CrossRefGoogle Scholar
  39. 39.
    Lord EA, Kristallogr Z (2006, to be published)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. Ranganathan
    • 1
  • A. K. Srivastava
    • 2
  • E. A. Lord
    • 1
  1. 1.Department of Metallurgy, Centre for Advanced Study, Indian Institute of Science BangaloreIndia
  2. 2.Division of Materials Characterization, National Physical LaboratoryElectron Microscope SectionNew DelhiIndia

Personalised recommendations