Journal of Materials Science

, Volume 42, Issue 5, pp 1838–1846 | Cite as

Structural and sensing properties of a novel Fe/Fe2O3/polyoxocarbosilane core shell nanocomposite powder prepared by laser pyrolysis

  • A. Tomescu
  • R. AlexandrescuEmail author
  • I. Morjan
  • F. Dumitrache
  • L. Gavrila-Florescu
  • R. Birjega
  • I. Soare
  • G. Prodan
  • Z. Bastl
  • A. Galikova
  • J. Pola
Nano May 2006


This paper reports about the synthesis and characterization of a novel Fe/Fe2O3/polyoxocarbosilane core shell nanocomposite as a material for gas-sensing applications. The nanocomposites (Fe-based nano cores enveloped with polymeric polyoxocarbosilane shells) were prepared by the IR laser co-pyrolysis of iron pentacarbonyl and hexamethyldisiloxane. The iron-based cores become superficially oxidized in atmosphere. The morphologies, chemical content and thermal behavior were studied by different analytical techniques. The sensing properties of the polymer-poor nanocomposite thick films were tested by measuring the variation of the electrical resistance in presence of CO and CH4, at a working temperature of 450 °C. Preliminary results indicate that for CO toxic gas, an n–p transitional character of the semiconducting iron oxide appears in humid relatively to dry air.


Thick Film Select Area Electron Diffraction Sensor Response HMDSO Hexamethyldisiloxane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support of this research by the Project No 4589-CEEX/2006 of the Romanian Ministry of Education and Research, is gratefully acknowledged.


  1. 1.
    Chen W, Yang J, Yang CZ (1997) J Mater Sci 32:3571CrossRefGoogle Scholar
  2. 2.
    Han JS, Bredow T, Davey DE, Yu AB, Mulcahy DE (2001) Sens Actuators B 75:18CrossRefGoogle Scholar
  3. 3.
    Batzill M, Diebold U (2006) J Phys Condens Matter 18:L129CrossRefGoogle Scholar
  4. 4.
    Yang T-Y, Lin H-M, Wei B-Y, Wu CH-Y, Lin CH-K (2003) Rev Adv Mater Sci 4:48CrossRefGoogle Scholar
  5. 5.
    Neri G, Bonavita A, Galvagno S, Siciliano P, Capone S (2002) Sens Actuators B 82:40CrossRefGoogle Scholar
  6. 6.
    Han JS, Bredow T, Davev DE, Yu AB, Mulcahv DE (2001) Sens Actuators B 75:18CrossRefGoogle Scholar
  7. 7.
    Tianshu Z, Hongmei L, Huanxing Z, Ruifang Z, Yusheng S (1996) Sens Actuators B 32:181CrossRefGoogle Scholar
  8. 8.
    Lee D-D, Choi D-H (1990) Sens Actuators B I:231CrossRefGoogle Scholar
  9. 9.
    Malyshev VV, Eryshkin AV, Koltypin EA, Varfolomeev AE, Vasiliev AA (1994) Sens Actuators B 18–19:434CrossRefGoogle Scholar
  10. 10.
    Adhikari B, Majumdar S (2004) Prog Polym Sci 29:699CrossRefGoogle Scholar
  11. 11.
    Haug M, Schierbaum KD, Endres HE, Drost S, Goepel W (1992) Sens Actuators A 32:326CrossRefGoogle Scholar
  12. 12.
    Bloor D, Donnelly K, Hands PJ, Laughlin P, Lussey D (2005) J Phys D Appl Phys 38:2851CrossRefGoogle Scholar
  13. 13.
    Sawicka KM, Prasad AK, Gouma PI (2005) Sens Lett 3:1CrossRefGoogle Scholar
  14. 14.
    Yu J, Liu RYF, Poon B, Nazarenko S, Koloski T, Vargo T, Hiltner A, Baer E (2004) J Appl Polym Sci 92:749CrossRefGoogle Scholar
  15. 15.
    Pola J, Marysko M, VorlU+00Alcek V, Bastl Z, Galýkov A, Vacek K, Alexandrescu R, Dumitrache F, Morjan I, Albu L, Prodan G (2005) Appl Organometal Chem 19:1015CrossRefGoogle Scholar
  16. 16.
    Alexandrescu R, Morjan I, Dumitrache F, Voicu I, Soare I, Sandu I, Fleaca CT (2004) Solid State Phenom 99–100:181CrossRefGoogle Scholar
  17. 17.
    Galíková A, Bastl Z, Alexandrescu R, Morjan I, Pola J (2005) Thermochim Acta 439:80CrossRefGoogle Scholar
  18. 18.
    Roescu R, Dumitriu I, Tomescu A (2004) Rom Reports Phys 56:607Google Scholar
  19. 19.
    Dumitrache F, Morjan I, Alexandrescu R, Morjan RE, Voicu I, Sandu I, Soare I, Ploscaru M, Fleaca C, Ciupina V, Prodan G, Rand B, Brydson R, Woodword A (2003) Diam Relat Mater 13:362CrossRefGoogle Scholar
  20. 20.
    Bi X-X, Granguly B, Huffman GP, Huggins FE, Endo M, Ecklund P (1993) Can J Mater Res 8:1666Google Scholar
  21. 21.
    Grosvenor AP, Kobe BA, Mcintyre NS (2004) Surf Sci 565:151CrossRefGoogle Scholar
  22. 22.
    Choi JY, Moon YT, Kim DK, Kim CH (1998) J Am Ceram Soc 81(9):2294CrossRefGoogle Scholar
  23. 23.
    NIST X-ray Photoelectron Spectroscopy Database, ver. 2.0, US Department of Commerce, NIST, Gaithersburg, MD 20899, USA, 1997Google Scholar
  24. 24.
    Brahim-Belhouari S, Bermak A, Shi M, Chan PCH (2005) IEEE Sens J 5:1433CrossRefGoogle Scholar
  25. 25.
    Gurlo A, Barsan N, Oprea A, Sahm M, Sahm T, Weimar U (2004) Appl Phys Lett 85:2280CrossRefGoogle Scholar
  26. 26.
    Van de Krol R, Tuller HL (2002) Solid State Ionics 150:167CrossRefGoogle Scholar
  27. 27.
    Schmelzer J Jr., Brown SA, Wurl A, Hyslop M, Blaikie RJ (2002) Phys Rev Lett 88:226802CrossRefGoogle Scholar
  28. 28.
    Pola J, Ouchi A, Vacek K, Galíková A, Blechta V, Boháˇcek J (2003) Solid State Sci 5:1079CrossRefGoogle Scholar
  29. 29.
    Interrante LV, Moraes K, Liu Q, Lu N, Puerta A, Sneddon LG (2002) Pure Appl Chem 74 11:2111Google Scholar
  30. 30.
    Varghese OK, Grimes CA (2003) J Nanosci Nanotechnol 3:277CrossRefGoogle Scholar
  31. 31.
    Kuroda H, Flood EA (1961) Can J Chem 39:1475CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • A. Tomescu
    • 1
  • R. Alexandrescu
    • 2
    Email author
  • I. Morjan
    • 2
  • F. Dumitrache
    • 2
  • L. Gavrila-Florescu
    • 2
  • R. Birjega
    • 2
  • I. Soare
    • 2
  • G. Prodan
    • 3
  • Z. Bastl
    • 4
  • A. Galikova
    • 5
  • J. Pola
    • 5
  1. 1.National Institute of Materials PhysicsBucharestRomania
  2. 2.National Institute for LasersPlasma and Radiation Physics BucharestBucharestRomania
  3. 3.Ovidius UniversityConstantaRomania
  4. 4.J. Heyrovsky Institute of Physical ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic
  5. 5.Institute for Chemical Process Fundamentals of the Czech Academy of SciencePrague 6Czech Republic

Personalised recommendations