Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 7059–7063 | Cite as

The influence of alcohol additives on the crystallization of ZrO2 under hydrothermal conditions

  • Dake Qin
  • Hongling Chen
Article

Abstract

ZrO2 small particles with different crystal habits were prepared from zirconium nitrate under hydrothermal conditions. The ZrO2 particles were characterized by XRD, TEM and SEM. The crystal structure, morphology and size of the ZrO2 particles were strongly dependent on the glycerin additive in the reaction solution. The phase-pure t-ZrO2 with the size about 10 nm formed from the reaction solution added with glycerin while the rod-like phase-pure m-ZrO2 with the size about 30 × 80 nm formed from the reaction solution without glycerin (180 °C, 18 h, pH = 13). The t-ZrO2 could also form under the same hydrothermal conditions in the presence of other polyhydric alcohol additives, such as trimethylolpropane and tetramethylolmethane. But monohydric and dihydric alcohols were not benefits to formation of phase-pure t-ZrO2. The mechanisms for formation of phase-pure t-ZrO2 were supposed according to the experimental results.

Keywords

Dihydric Alcohol Reaction Solution Hydrothermal Condition Hydrothermal Reaction Crystal Nucleus 

References

  1. 1.
    Yanqing Z, Erwei S et al (2002) Sci China (Ser. E) 45(4):273Google Scholar
  2. 2.
    Laverne JA (2005) J Phys Chem B 109(12):5395CrossRefGoogle Scholar
  3. 3.
    Garvie RC (1975) Nature 258:703CrossRefGoogle Scholar
  4. 4.
    Kim B-N, Hiraga K et al (2001) Nature 413:288CrossRefGoogle Scholar
  5. 5.
    Ma Z-Y, Yang C et al (2005) J Mol Catal A-Chem 227:119CrossRefGoogle Scholar
  6. 6.
    Morterra C, Cerrato G et al (2002) Phys Chem Chem Phys 4:3136CrossRefGoogle Scholar
  7. 7.
    Rabenau A (1985) Angew Chem Int Ed Engl 24:1026CrossRefGoogle Scholar
  8. 8.
    Piticescu RR, Monty C et al (2001) J Eur Ceram Soc 21:2057CrossRefGoogle Scholar
  9. 9.
    Yoshimura M et al (1999) Mater Chem Phys 61:1CrossRefGoogle Scholar
  10. 10.
    Dell’ Agli G, Mascolo G (2000) J Mat Sci 35:661CrossRefGoogle Scholar
  11. 11.
    Stefanic G, Popovic S et al (1997) Thermochim Acta 303:31CrossRefGoogle Scholar
  12. 12.
    Jiao X, Chen D et al (2003) J Cryst Growth 258:158CrossRefGoogle Scholar
  13. 13.
    Dell’ Agli G et al (1999) Solid State Ionics 123:87CrossRefGoogle Scholar
  14. 14.
    Hu-Min C et al (1999) J Eur Ceram Soc 19:1675CrossRefGoogle Scholar
  15. 15.
    Xu G, Zhang Y-W et al (2004) J Am Ceram Soc 87(12):2275CrossRefGoogle Scholar
  16. 16.
    Mitsuhashi T, Ichihara M et al (1974) J Am Ceram Soc 57:97CrossRefGoogle Scholar
  17. 17.
    Tingyao S (1990) In: Coordination chemistry. Chendu University of Science and Technology Press, SiChuan, China, p 34Google Scholar
  18. 18.
    Bokhimi X, Morales A et al (1999) Nanostruct Mater 12:589CrossRefGoogle Scholar
  19. 19.
    Livage J (1998) Catal Today 41:3CrossRefGoogle Scholar
  20. 20.
    Toth LM, Lin JS, Felker LK (1991) J Phys Chem 95:3106CrossRefGoogle Scholar
  21. 21.
    Singhal A, Toth LM et al (1996) J Am Chem Soc 118:11529CrossRefGoogle Scholar
  22. 22.
    Matsui K, Ohgai M (2001) J Am Ceram Soc 84(10):2303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.College of Chemistry & Chemical EngineeringNanjing University of Technology, Key Laboratory of Material-Oriented Chemical Engineering of Jiangsu ProvinceNanjingP.R. China

Personalised recommendations