Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 7111–7118 | Cite as

Hygrothermal effects on the shear properties of carbon fiber/epoxy composites

  • E. C. Botelho
  • L. C. Pardini
  • M. C. Rezende
Article

Abstract

The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite’s life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite’s degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites (laminates [0/0]s and [0/90]s) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G12) have been determinated by using the Iosipescu test. Results for laminates [0/0]s and [0/90]s, after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0]s and [0/90]s, respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0]s and [0/90]s.

Keywords

Shear Strength Environmental Conditioning Interlaminar Shear Strength Iosipescu Shear Test Hygrothermal Effect 

Notes

Acknowledgements

The authors acknowledge financial support received from FAPESP under grants 02/01288-3 and 03/04240-4. The authors are indebted to Dr. José Maria Marlett from EMBRAER for helping to process the composite materials used in this work.

References

  1. 1.
    Costa ML, Almeida SFM, Rezende MC (2001) Compos Sci Technol 61:2101CrossRefGoogle Scholar
  2. 2.
    Rikards R (2000) Comput Struct 76:11CrossRefGoogle Scholar
  3. 3.
    Hillermeier RW, Seferis JC (2001) Compos Part A 32:721CrossRefGoogle Scholar
  4. 4.
    Cândido GM, Almeida SFM (1993) Compos Struct 25:287CrossRefGoogle Scholar
  5. 5.
    Berglund LA, Kenny JM (1991) SAMPE J 27(2):27Google Scholar
  6. 6.
    Peters ST (1998) Handbook of composites. Chapman and Hall, LondonCrossRefGoogle Scholar
  7. 7.
    Sala G (2000) Compos Part B 31:357CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Hartwig G (1998) Cryogenics 38:401CrossRefGoogle Scholar
  9. 9.
    Cândido GM, Rezende MC, Almeida SFM (2000) Mater Res 3(2):11CrossRefGoogle Scholar
  10. 10.
    Zhang PQ, Ruan JH, Li WZ (2001) Cryogenics 41:245CrossRefGoogle Scholar
  11. 11.
    Chiang MYM, He J (2002) Compos Part B 33:461CrossRefGoogle Scholar
  12. 12.
    Degallaix G, Hassaini D, Vittecoq E (2002) Int J Fatigue 24:319CrossRefGoogle Scholar
  13. 13.
    Unal Ö, Barard DJ, Anderson IE (1999) Scripta Mater 40(3):271CrossRefGoogle Scholar
  14. 14.
    John NAS, Brown JR (1998) Compos Part A 29:939CrossRefGoogle Scholar
  15. 15.
    Tarnopol’skii YM, Arnautov AK, Kulakov AVL (1999) Compos Part A 30:879CrossRefGoogle Scholar
  16. 16.
    Barnes JA, Kumosa K, Hull D (1987) Compos Sci Technol 28:251CrossRefGoogle Scholar
  17. 17.
    Odegard G, Kumosa M (1999) J Compos Mater 33(21):1981CrossRefGoogle Scholar
  18. 18.
    Botelho EC, Lauke B, Figiel L, Rezende MC (2003) Compos: Sci Technol 63:1843Google Scholar
  19. 19.
    Iosipescu N (1967) J Mater 2(3):537Google Scholar
  20. 20.
    Tang CY, Lee TC, Rao B (2003) J Mater Process Technol 6754:1Google Scholar
  21. 21.
    Bansal A, Kumosa M (1998) Eng Fract Mech 59(1):89CrossRefGoogle Scholar
  22. 22.
    Almeida JRM, Monteiro SN (1999) Polym Test 18:407CrossRefGoogle Scholar
  23. 23.
    Li TQ, Zhang MQ, Zeng HM (2001) Compos Part A 32:1727CrossRefGoogle Scholar
  24. 24.
    Marín JC, Cañas J, París F, Morton J (2002) Compos Part A 33:101CrossRefGoogle Scholar
  25. 25.
    Han L, Piggott MR (2002) Compos Part A 33:35CrossRefGoogle Scholar
  26. 26.
    Odegard G, Kumosa M (2000) Compos Sci Technol 60:2917CrossRefGoogle Scholar
  27. 27.
    ANNUAL AMERICAN STANDARD TEST METHODS. Standard test method for shear properties of composite materials by the V-Notched Beam Method. American Society for Testing and Materials, Philadelphia, PA, 1993 (ASTM-D 5379/D 5379M)Google Scholar
  28. 28.
    ANNUAL AMERICAN STANDARD TEST METHODS. Standard test method for moisture in a graphite sample. American Society for Testing and Materials, Philadelphia, PA, 1985 (ASTM-C 562-85)Google Scholar
  29. 29.
    ANNUAL AMERICAN STANDARD TEST METHODS. Standard test method for APPARENT interlaminar shear strenght of parallel fiber composites by short-beam method. American Society for Testing and Materials, Philadelphia, PA, 1988 (ASTM-D 2344-84(1503))Google Scholar
  30. 30.
    Pastore CM, Gowayed YA (1994) J Compos Technol Res 16(1):32CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • E. C. Botelho
    • 1
    • 2
  • L. C. Pardini
    • 1
  • M. C. Rezende
    • 1
  1. 1.Divisão de MateriaisInstituto de Aeronáutica e Espaço, CTASão PauloBrazil
  2. 2.Fatigue and Aeronautic Material Research Group, Department of Material and TechnologyUNESPGuaratinguetáBrazil

Personalised recommendations