Advertisement

Journal of Materials Science

, Volume 41, Issue 21, pp 7159–7164 | Cite as

Wettability of \(\hbox{R}(01\bar{1}2)\) single crystalline and polycrystalline \(\alpha\hbox{-}\hbox{Al}_{2}\hbox{O}_{3}\) substrates by Al–Si alloys over wide composition and temperature ranges

  • Ping Shen
  • Hidetoshi Fujii
  • Kiyoshi Nogi
Article

Abstract

The wetting behaviors of \(\hbox{R}(01\bar{1}2)\) single crystalline and polycrystalline \(\alpha\hbox{-}\hbox{Al}_{2}\hbox{O}_{3}\) substrates by Al–Si alloys were studied over wide composition and temperature ranges. The wettability is quite good for all compositions of the alloys. The effect of temperature is moderate while that of the composition is significant. The dependence of the wettability on the alloy composition displays a “valley” profile with the minimum value appearing in the range of 60–70at.%Si. The wetting improvement by the addition of Al to Si mainly results from the decrease in the solid–liquid interfacial free energy by the Al segregation at the interface, while that by the addition of Si to Al results from the decrease in the surface tension of the liquid by the Si segregation.

Keywords

Contact Angle Wettability Alumina Surface Initial Contact Angle Polycrystalline Substrate 

Notes

Acknowledgement

This work was partly supported by the 21st Century COE Program (Project “Center of Excellence for Advanced Structural and Functional Materials Design”) from the Ministry of Education, Sports, Culture, Science and Technology of Japan.

References

  1. 1.
    Trumble KP (1998) Acta Mater 46:2363CrossRefGoogle Scholar
  2. 2.
    Laurent V, Chatain D, Chatillon C, Eustathopoulos N (1988) Acta Metall 36:1797CrossRefGoogle Scholar
  3. 3.
    Ownby PD, Li Ke Wen K, Weirauch DA Jr (1991) J Am Ceram Soc 74:1275CrossRefGoogle Scholar
  4. 4.
    Levi G, Kaplan WD (2002) Acta Mater 50:75CrossRefGoogle Scholar
  5. 5.
    Levi G, Kaplan WD (2003) Acta Mater 51:2793CrossRefGoogle Scholar
  6. 6.
    Saiz E, Tomsia AP, Suganuma K (2003) J Eur Ceram Soc 23:2787CrossRefGoogle Scholar
  7. 7.
    Saiz E, Tomsia AP, Cannon RM (1998) Acta Mater 46:2349CrossRefGoogle Scholar
  8. 8.
    Saiz E, Tomsia AP (2004) Nature Mater 3:903CrossRefGoogle Scholar
  9. 9.
    Oh SH, Kauffmann Y, Scheu C, Kaplan WD, Ruhle M (2005) Science 310[5748]:661CrossRefGoogle Scholar
  10. 10.
    Shen P, Fujii H, Matsumoto T, Nogi K (2004) J Am Ceram Soc 87:2151CrossRefGoogle Scholar
  11. 11.
    Humenik M Jr, Kingery WD (1954) J Am Ceram Soc 37:18CrossRefGoogle Scholar
  12. 12.
    Mukai K, Yuan ZF (2000) Mater Trans JIM 41:338CrossRefGoogle Scholar
  13. 13.
    Li JG, Hausner H (1992) Mater Lett 14:329CrossRefGoogle Scholar
  14. 14.
    Shen P, Fujii H, Matsumoto T, Nogi K (2005) J Am Ceram Soc 88:912CrossRefGoogle Scholar
  15. 15.
    Wang DJ, Wu ST (1995) Scripta Metall Mater 32:1125CrossRefGoogle Scholar
  16. 16.
    Shen P, Fujii H, Nogi K (2004) Mater Trans 45:2857CrossRefGoogle Scholar
  17. 17.
    Shen P, Fujii H, Matsumoto T, Nogi K (2003) Scripta Mater 49:563CrossRefGoogle Scholar
  18. 18.
    Shen P, Fujii H, Matsumoto T, Nogi K (2003) Acta Mater 51:4897CrossRefGoogle Scholar
  19. 19.
    Belton JW, Evan MG (1945) Trans Faraday Soc 41:1CrossRefGoogle Scholar
  20. 20.
    Chatain D, Rivollet I, Eustathopoulos N (1986) J Chim Phys 83:561CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Key Laboratory of Automobile MaterialsJilin UniversityChangchunP.R. China
  2. 2.Joining and Welding Research InstituteOsaka UniversityOsakaJapan

Personalised recommendations