Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4136–4148 | Cite as

The synthesis, swelling behaviour and rheological properties of chemically crosslinked thermosensitive copolymers based on N-isopropylacrylamide

  • Luke M. Geever
  • César M. Mínguez
  • Declan M. Devine
  • Michael J. D. Nugent
  • James E. Kennedy
  • John G. Lyons
  • Austin Hanley
  • Sinead Devery
  • Paul T. Tomkins
  • Clement L. HigginbothamEmail author
Article

Abstract

In this contribution thermosensitive polymer matrices based on N-isopropylacrylamide have been developed. The hydrogels were prepared by photopolymerisation of N-isopropylacrylamide and 1-vinyl-2-pyrrolidinone in appropriate amounts of distilled water. The monomers were cured using a UV-light sensitive initiator called 1-hydroxycyclohexylphenylketone. These copolymers were crosslinked using ethylene glycol dimethacrylate and poly(ethylene glycol) dimethacrylate with molecular weights 600 and 1,000, at 0.1 wt% of the total monomer content. The chemical structure of the xerogels was characterised by means of Fourier transform infrared spectroscopy (FTIR) and the transition temperature of the hydrogels was determined using modulated differential scanning calorimetry (MDSC). By altering the feed ratio, hydrogels were synthesised to have lower critical solution temperatures (LCST) around 37 °C. This ability to shift the phase transition temperature of the gels provides excellent flexibility in tailoring transitions for specific uses. The samples synthesised with PEG1000DMA crosslinking agents absorbed over 18 times their weight in water, while maintaining good gel integrity thus falling marginally short of being characterised as superabsorbent. Each of the samples showed similar deswelling behaviour at 37 °C. Rheological studies showed that increasing the molecular weight of the crosslinking agent caused an increase in hydrogel strength.

Keywords

Crosslinking Agent Phase Transition Temperature Lower Critical Solution Temperature PNIPAAm EGDMA 

Notes

Acknowledgements

This study was supported in parts by grants from both Enterprise Ireland and the Athlone Institute of Technology research and development fund.

References

  1. 1.
    Bignotti F, Penco M, Sartore L, Peroni I, Mendichi R, Casolaro M, D’Amore A (2000) Polymer 41:8247CrossRefGoogle Scholar
  2. 2.
    Devine DM, Higginbotham CL (2003) Polymer 44:7851CrossRefGoogle Scholar
  3. 3.
    Anseth KS, Bowman CN, Brannon-Peppas L (1996) Biomaterials 17:1647CrossRefGoogle Scholar
  4. 4.
    Kishida A, Ikada Y (2002) In: Dumitriu S (ed) Polymeric biomaterials, 2nd edn. Marcel Dekker, Inc., New York, pp. 133–145Google Scholar
  5. 5.
    Ravichandran P, Shantha KL, Panduranga Rao K (1997) Int J Pharm 154:89CrossRefGoogle Scholar
  6. 6.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Eur J Pharm Biopharm 50:27CrossRefGoogle Scholar
  7. 7.
    Nguyen KT, West JL (2002) Biomaterials 23:4307CrossRefGoogle Scholar
  8. 8.
    Lopérgolo LC, Lugão AB, Catalani LH (2003) Polymer 44:6217CrossRefGoogle Scholar
  9. 9.
    Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) J Control Release 68:23CrossRefGoogle Scholar
  10. 10.
    LaPorte RJ (1997) Hydrophilic polymer coatings for medical devices. Technomic Pub. Co. IncGoogle Scholar
  11. 11.
    Brazel CS, Peppas NA (1996) ACS Polymc Mater: Sci Eng 70:370Google Scholar
  12. 12.
    Grass M, Colombo I, Lapasin R (2000) J Control Release 68:97CrossRefGoogle Scholar
  13. 13.
    Murata Y, Sasaki N, Miyamoto E, Kawashima S (2000) Eur J Pharm Biopharm 50:221CrossRefGoogle Scholar
  14. 14.
    Ruel-Gariépy E, Chenite A, Chaput C, Guirguis S, Leroux JC (2000) Int J Pharm 203:89CrossRefGoogle Scholar
  15. 15.
    Park K, Qui Y (2001) Adv Drug Delivery Rev 53:321CrossRefGoogle Scholar
  16. 16.
    Deshmukh MV, Vaidya AA, Kulkarni MG, Rajamohonan PR, Ganapathy S (2000) Polymer 41:7951CrossRefGoogle Scholar
  17. 17.
    Costa R, Freitas R (2002) Polymer 43:5879CrossRefGoogle Scholar
  18. 18.
    Boutris C, Chatzi EG, Kiparissides C (1997) Polymer 38:2567CrossRefGoogle Scholar
  19. 19.
    Feil H, Bae YH, Feijen J, Kim SW (1993) Macromolecules 26:2496CrossRefGoogle Scholar
  20. 20.
    Otake K, Inomata H, Konno M, Saito S (1990) Macromolecules 23:283CrossRefGoogle Scholar
  21. 21.
    Chilkoti A, Dreher M, Meyer D, Raucher D (2002) Adv Drug Delivery Rev 54:613CrossRefGoogle Scholar
  22. 22.
    Ebril C, Kazancioğlu E, Uyanik N (2004) Eur Polym J 40:1145CrossRefGoogle Scholar
  23. 23.
    Liu W, Zhang B, Lu WW, Li X, Dunwan Z, Yao KD, Wang Q, Zhao C, Wang C (2004) Biomaterials 25:3005CrossRefGoogle Scholar
  24. 24.
    Eeckman F, Moës AJ, Amighi K (2002) Int J Pharm 241:113CrossRefGoogle Scholar
  25. 25.
    Kim SJ, Lee CK, Lee YM, Kim SI (2003) J Appl Polym Sci 90:3032CrossRefGoogle Scholar
  26. 26.
    Geever LM, Devine DM, Nugent MJD, Kennedy JE, Lyons JG, Higginbotham CL (2006) Eur Polym J 42:69CrossRefGoogle Scholar
  27. 27.
    Devine DM, Higginbotham CL (2005) Eur Polym J 41:1272CrossRefGoogle Scholar
  28. 28.
    Jones DS (1999) Int J Pharm 179:167CrossRefGoogle Scholar
  29. 29.
    Meyvis TKL, Stubbe BG, Van Steenbergen MJ, Hennink WE, De Smedt SC, Demeester J (2002) Int J Pharm 244:163CrossRefGoogle Scholar
  30. 30.
    Jiang H, Su W, Mather PT, Bunning TJ (1999) Polymer 40:4593CrossRefGoogle Scholar
  31. 31.
    Peppas NA, Khare AR (1993) Adv Drug Delivery Rev 11:1CrossRefGoogle Scholar
  32. 32.
    White TJ, Liechty WB, Natarajan LV, Tondiglia VP, Bunning TJ, Guymon CA (2006) Polymer 47:2289CrossRefGoogle Scholar
  33. 33.
    Száraz I, Forsling W (2000) Polymer 41:4831CrossRefGoogle Scholar
  34. 34.
    Sun SF (1998) Physical chemistry of macromolecules, basic principles and issues. Wiley, New York, pp 400–415Google Scholar
  35. 35.
    Ju HK, Kim SY, Kim SJ, Lee YM (2002) J Appl Polym Sci 83:1128CrossRefGoogle Scholar
  36. 36.
    Schild HG, Muthukumar M, Tirrell DA (1991) Macromolecules 24:948CrossRefGoogle Scholar
  37. 37.
    Eeckman F, Moës AJ, Amighi K (2004) Int J Pharm 273:109CrossRefGoogle Scholar
  38. 38.
    Eeckman F, Moës AJ, Amighi K (2004) Eur Polym J 40:873CrossRefGoogle Scholar
  39. 39.
    Schild HG (1992) Prog Polym Sci 17:163CrossRefGoogle Scholar
  40. 40.
    Narasimhan B, Peppas NA (1996) Macromolecules 29:3283CrossRefGoogle Scholar
  41. 41.
    Panayiotou M, Freitag R (2005) Polymer 46:615CrossRefGoogle Scholar
  42. 42.
    Zhang XZ, Zhuo RX (2000) Eur Polym J 36:643CrossRefGoogle Scholar
  43. 43.
    Jones A, Vaughan D (2005) Journal of Orthop Nurs 9:S1CrossRefGoogle Scholar
  44. 44.
    Zhang X, Zhuo R (2000) J Colloid Interface Sci 223:311CrossRefGoogle Scholar
  45. 45.
    Ward IM, Hadley DW (1993) An introduction to the mechanical properties of solid polymers. Wiley, Chichester, UKGoogle Scholar
  46. 46.
    Nugent MJD, Hanley A, Tomkins PT, Higginbotham CL (2005) J Mater Sci: Mater Med 16:1149Google Scholar
  47. 47.
    Hong Y, Chirila T, Cuypers M, Constable I (1996) J Biomater Appl 11:135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Luke M. Geever
    • 1
  • César M. Mínguez
    • 1
  • Declan M. Devine
    • 1
  • Michael J. D. Nugent
    • 1
  • James E. Kennedy
    • 1
  • John G. Lyons
    • 1
  • Austin Hanley
    • 1
  • Sinead Devery
    • 2
  • Paul T. Tomkins
    • 2
  • Clement L. Higginbotham
    • 1
    Email author
  1. 1.Centre for Biopolymer and Biomolecular ResearchAthlone Institute of TechnologyWestmeathIreland
  2. 2.Department of Life and Physical Science, Toxicology UnitAthlone Institute of TechnologyWestmeathIreland

Personalised recommendations