Journal of Materials Science

, Volume 42, Issue 13, pp 5105–5117 | Cite as

(Plasticized) Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties

  • Samuel Solarski
  • Fatma Mahjoubi
  • Manuela Ferreira
  • Eric Devaux
  • Pierre Bachelet
  • Serge Bourbigot
  • René Delobel
  • Philippe Coszach
  • Marius Murariu
  • Amália Da silva Ferreira
  • Michael Alexandre
  • Philippe Degee
  • Philippe Dubois


Various quantities of Cloisite® 30B (from 1% to 4% in weight) have been added to a polylactide matrix by melt blending to produce polylactide-based nanocomposites. Then, these blends have been melt-spun to produce multifilaments yarns. It is demonstrated that it is necessary to use a plasticizer to spin a blend with 4% in weight of Cloisite® 30B. The properties of these yarns have been studied (dispersion of the clay, thermal, mechanical and shrinkage properties). A decrease of the tensile properties is observed when the quantity of Cloisite® 30B increases, but an improvement of the thermal and shrinkage properties is highlighted. These multifilaments have been knitted and the flammability studied using cone calorimeter at 35 kW/m2. A strong decrease, up to 38%, of the heat release rate has been measured.


Crystallization Rate Silicate Layer Draw Ratio Fire Behavior Cone Calorimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very grateful to Interreg III “France-Wallonie”, Région Wallonne, Région Nord Pas de Calais and European Union (FEDER) for the financial support in the frame of interregional project MABIOLAC. SMPC thanks the Belgian Federal Government Office of Science Policy (SSTC-PAI 5/3) for general support and is much indebted to both «Région Wallonne» and the European Commission “FSE and FEDER” for financial support in the frame of Phasing-out Hainaut: Materia Nova.


  1. 1.
    Agrawal AK, Bhalla R (2003) J Macromol Sci Part C Polym Rev C43:479CrossRefGoogle Scholar
  2. 2.
    Postema AR, Luiten AH, Pennings AJ (1990) J Appl Polym Sci 49:1265CrossRefGoogle Scholar
  3. 3.
    Postema AR, Luiten AH, Oostra H, Pennings AJ (1990) J Appl Polym Sci 49:1275CrossRefGoogle Scholar
  4. 4.
    Tsuji H, Ikada Y, Hyon S-H, Kimura Y, Kitao T (1994) J Appl Polym Sci 51:337CrossRefGoogle Scholar
  5. 5.
    Horacek I, Kalisek V (1994) J Appl Polym Sci 54:1751CrossRefGoogle Scholar
  6. 6.
    Horacek I, Kalisek V (1994) J Appl Polym Sci 54:1759CrossRefGoogle Scholar
  7. 7.
    Eling B, Gogolewski S, Pennings AJ (1982) Polymer 23:1587CrossRefGoogle Scholar
  8. 8.
    Leenslag JW, Pennings AJ (1987) Polymer 28:1695CrossRefGoogle Scholar
  9. 9.
    Schmack G, Jehnichen D, Vogel R, Tändler B, Beyreuther R, Jacobsen S, Fritz H-G (2001) J Biotech 86:151CrossRefGoogle Scholar
  10. 10.
    Schmack G, Tändler B, Optiz G, Vogel R, Komber H, Häuβler L, Voigt D, Weinmann S, Heinemann M, Fritz H-G (2004) J Appl Polym Sci 91:800CrossRefGoogle Scholar
  11. 11.
    Mezghani K, J.E Spruiell (1998) J Polym Sci Part B Polym Phys 36:1005CrossRefGoogle Scholar
  12. 12.
    Schmack G, Tändler B, Vogel R, Beyreuther R, Jacobsen S, Fritz H-G (1999) J Appl Polym Sci 73:2785CrossRefGoogle Scholar
  13. 13.
    Takasaki M, Ito H, Kikutani T (2003) J Macromol Sci Part B Phys 42: 57CrossRefGoogle Scholar
  14. 14.
    Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaseri C (1997) Polymer 38:79CrossRefGoogle Scholar
  15. 15.
    Cicero JA, Dorgan JR, Dec SF, Knauss DM (2002) Polym Degrad Stab 78:95CrossRefGoogle Scholar
  16. 16.
    Solarski S, Ferreira M, Devaux E (2005) Polymer 46:11187CrossRefGoogle Scholar
  17. 17.
    Solarski S, Ferreira M, Devaux E (2006) J Textile Instit (accepted)Google Scholar
  18. 18.
    Alexandre M, Dubois P (2000) Mat Sci Eng 28:1CrossRefGoogle Scholar
  19. 19.
    Sinha Ray S, Okamoto M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  20. 20.
    Morgan AB, Gilman JW (2003) J Appl Polym Sci 87:1329CrossRefGoogle Scholar
  21. 21.
    Bourbigot S, Vanderhart DL, Gilman JW, Awad WH, Davis RD, Morgan AB, Wilkie C, (2003) J Polym Sci Part B Polym Phys 41:3188CrossRefGoogle Scholar
  22. 22.
    Krikorian V, Pochan DJ (2003) Chem Mater 15:4317CrossRefGoogle Scholar
  23. 23.
    Wu T, Chiang MF (2005) Polym Eng Sci 45:1615CrossRefGoogle Scholar
  24. 24.
    Paul MA, Alexandre M, Degée P, Henrist C, Rulmont A, Dubois P (2003) Polymer 44:443CrossRefGoogle Scholar
  25. 25.
    Pluta M, Galeski A, Alexandre M, Paul M-A, Dubois P (2002) J Appl Polym Sci 86:1497CrossRefGoogle Scholar
  26. 26.
    Nam PH, Fujimori A, Masuko T (2004) J Appl Polym Sci 93:2711CrossRefGoogle Scholar
  27. 27.
    Di Y, Iannace S, Di Maio E, Nicolais L (2005) J Polym Sci Part B Polym Phys 43:689CrossRefGoogle Scholar
  28. 28.
    Pluta M (2004) Polymer 45:8239CrossRefGoogle Scholar
  29. 29.
    Paul MA, Alexandre M, Degée P, Calberg C, Jérôme R, Dubois P (2003) Macromol Rapid Commun 24:561CrossRefGoogle Scholar
  30. 30.
    Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Rulmont A, Dubois P (2005) Macromol Chem Phys 206:484CrossRefGoogle Scholar
  31. 31.
    Martin O, Avérous L (2001) Polymer 42:6209CrossRefGoogle Scholar
  32. 32.
    Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) J Appl Polym Sci 90:1731CrossRefGoogle Scholar
  33. 33.
    Ljungberg N, Wesslen B (2002) J Appl Polym Sci 86:1227CrossRefGoogle Scholar
  34. 34.
    Younes H, Cohn D (1988) Eur Polym J 24:765CrossRefGoogle Scholar
  35. 35.
    Labrecque LV, Kumar RA, Dave V, Gross RA, Mc-Carthy SP (1997) J Appl Polym Sci 66:1507CrossRefGoogle Scholar
  36. 36.
    Jacobsen S, Fritz HG (1999) Polym Eng Sci 39:1303CrossRefGoogle Scholar
  37. 37.
    Bourbigot S, Devaux E, Flambard X (2002) Polym Deg Stab 75:397CrossRefGoogle Scholar
  38. 38.
    Avrami M (1939) J Chem Phys 7:1103CrossRefGoogle Scholar
  39. 39.
    Babrauskas V (1982) Development of cone calorimeter-a bench scale, rate of heat release based on oxygen consumption: NBS-IR 82-2611. US Nat Bur Stand, GaithersburgGoogle Scholar
  40. 40.
    Babrauskas V (1984) Fire Mater 8:81CrossRefGoogle Scholar
  41. 41.
    Sinha S Ray, Okamoto M (2003) Macromol Rapid Commun 24:815CrossRefGoogle Scholar
  42. 42.
    Kopinke F-D, Remmle M, Mackenzie K, Möder M, Wachsen O (1996) Polym Deg Stab 53:329Google Scholar
  43. 43.
    Yoon K, Polk MB, Min BG, Schiraldi DA (2004) Polym Intern 53:2072CrossRefGoogle Scholar
  44. 44.
    Gilman JW (1999) Appl Clay Sci 15:31CrossRefGoogle Scholar
  45. 45.
    Xiao W, Yu H, Han K, Yu M (2005) J Appl Polym Sci 96:2247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Samuel Solarski
    • 1
  • Fatma Mahjoubi
    • 1
  • Manuela Ferreira
    • 1
  • Eric Devaux
    • 1
  • Pierre Bachelet
    • 2
  • Serge Bourbigot
    • 2
  • René Delobel
    • 2
  • Philippe Coszach
    • 3
  • Marius Murariu
    • 4
  • Amália Da silva Ferreira
    • 4
  • Michael Alexandre
    • 4
  • Philippe Degee
    • 4
  • Philippe Dubois
    • 4
  1. 1.Laboratoire de Génie et Matériaux Textiles (GEMTEX)UPRES EA2461, Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT)Roubaix Cedex 01France
  2. 2.Laboratoire Procédés d’Élaboration des Revêtements Fonctionnels (PERF)LSPES UMR 8008, École Nationale Supérieure de Chimie de Lille (ENSCL)Villeneuve d’Ascq CedexFrance
  3. 3.Galactic s.aEscanafflesBelgium
  4. 4.Service des Matériaux Polymères et Composites (SMPC), University of Mons-HainautMonsBelgium

Personalised recommendations