Journal of Materials Science

, Volume 42, Issue 5, pp 1660–1672 | Cite as

Processing and behavior of nanostructured metallic alloys and composites by cryomilling

  • B. Q. Han
  • J. Ye
  • F. Tang
  • J. Schoenung
  • E. J. Lavernia
Nano May 2006


Recent interest in nanostructured materials stems, not only from their potential use in a variety of applications, but also from the reported discovery of novel fundamental phenomena. The consolidation of cryomilled powder provides a potential pathway towards large scale manufacturing of nanostructured metallic materials. This approach typically engenders the mechanical attrition of powders in liquid nitrogen, followed by consolidation, using established commercial techniques, such as isostatic pressing and extrusion. In this overview paper, published data are reviewed and discussed with particular emphasis on the following topics: nanostructure evolution mechanisms; primary consolidation and secondary processing methods; thermal stability of cryomilled materials; and mechanical behavior of consolidated materials. Recent mechanical behavior data and the associated mechanisms of cryomilled Al alloys are discussed in an effort to shed light into the fundamental behavior of ultrafine grained and nanostructured materials.


Milling Severe Plastic Deformation Mechanical Milling Milled Powder Cold Isostatic Pressing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Office of Naval Research (Grant No. N00014-04-1-0370) and US Marine Corps (Contract No. N00014-03-C-0163) is gratefully acknowledged.


  1. 1.
    Koch CC (ed) (2002) Nanostructured materials: processing, properties and potential applications. Noyes Publications (William Andrew Publishing), Norwich, NYGoogle Scholar
  2. 2.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  3. 3.
    Luton MJ, Jayanth CS, Disko MM, Matras S, Vallone J (1989) In: Materials Research Society (ed) MRS Proc, vol 132, p 79Google Scholar
  4. 4.
    Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Metall Mater Trans A 29A:2469Google Scholar
  5. 5.
    Zhou F, Liao XZ, Zhu YT, Dallek S, Lavernia EJ (2003) Acta Mater 51:2777Google Scholar
  6. 6.
    Tellkamp VL, Melmed A, Lavernia EJ (2001) Metall Mater Trans A 32A:2335Google Scholar
  7. 7.
    Rodriguez R, Hayes RW, Berbon PB, Lavernia EJ (2003) Acta Mater 51:911CrossRefGoogle Scholar
  8. 8.
    Han BQ, Lee Z, Nutt SR, Lavernia EJ, Mohamed FA (2003) Metall Mater Trans A 34A:603Google Scholar
  9. 9.
    Han BQ, Lee Z, Witkin D, Nutt SR, Lavernia EJ (2005) Metall Mater Trans A 36A:957Google Scholar
  10. 10.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929CrossRefGoogle Scholar
  11. 11.
    Fecht HJ (1995) NanoStruct Mater 6:33CrossRefGoogle Scholar
  12. 12.
    Benjamin JS, Volin TE (1974) Metall Trans A 5:1929Google Scholar
  13. 13.
    Mautice DR, Courtney TH (1990) Metall Trans A 21:289Google Scholar
  14. 14.
    Mautice DR, Courtney TH (1995) Metall Mater Trans A 26:2437Google Scholar
  15. 15.
    Liao XZ, Huang JY, Zhu YT, Zhou F, Lavernia EJ (2003) Philos Magn A 83:3065CrossRefGoogle Scholar
  16. 16.
    Zhou F, Rodriguez R, Lavernia EJ (2002) Mater Sci Forum 386–388:409CrossRefGoogle Scholar
  17. 17.
    Eckert J, Holzer JC, Krill ICE, Johnson WL (1992) J Mater Res 7:1751Google Scholar
  18. 18.
    Mohamed FA (2003) Acta Mater 51:4107CrossRefGoogle Scholar
  19. 19.
    Ye J, He J, Schoenung JM (2006) Metall Mater Trans A (in print)Google Scholar
  20. 20.
    Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) Scr Mater 53:481CrossRefGoogle Scholar
  21. 21.
    Tang F, Hagiwara M, Schoenung JM (2005) Scr Mater 53:619CrossRefGoogle Scholar
  22. 22.
    Chung KH, He J, Shin DH, Schoenung JM (2003) Mater Sci Eng A 356:23CrossRefGoogle Scholar
  23. 23.
    Fogagnolo JB, Ruiz-Navas EM, Robert MH, Torralba JM (2002) Scr Mater 47:243CrossRefGoogle Scholar
  24. 24.
    Groza JR, Dowding RJ (1996) NanoStruct Mater 7:749CrossRefGoogle Scholar
  25. 25.
    Bourell DL, Groza JR (2002) ASM handbook vol 7—Powder metal technologies and applications, vol 7. ASM International, Materials Park, OHGoogle Scholar
  26. 26.
    Groza JR (2002) Nanostructured materials: processing, properties and potential applications. Noyes Publications, Norwich, New York, p 115Google Scholar
  27. 27.
    Ashby MF (1991) Powder metallurgy: an overview. The Institute of Metals, London, p 144Google Scholar
  28. 28.
    Atkinson HV, Davies S (2000) Metall Mater Trans A 31A:2981Google Scholar
  29. 29.
    Lee Z, Rodriguez R, Hayes RW, Lavernia EJ, Nutt SR (2003) Metall Mater Trans A 34A:1473Google Scholar
  30. 30.
    Zhang Z, Han BQ, Witkin D, Ajdelsztajn L, Lavernia EJ (2006) Scr Mater 54:869CrossRefGoogle Scholar
  31. 31.
    Lynn-Ferguson B, Smith OD (1984) ASM handbook vol 7—Powder metallurgy, vol 7. ASM International, Materials Park, p 537Google Scholar
  32. 32.
    Anderson RL, Groza J (1988) Metal Powder Report 43:678Google Scholar
  33. 33.
    Chan HW (1988) Mater Design 9:355CrossRefGoogle Scholar
  34. 34.
    Witkin D, Han BQ, Lavernia EJ (2005) J Mater Res 20:2117CrossRefGoogle Scholar
  35. 35.
    Park YS, Chung KH, Kim NJ, Lavernia EJ (2004) Mater Sci Eng A 374:211CrossRefGoogle Scholar
  36. 36.
    Han BQ, Lavernia EJ, Mohamed FA (2005) Metall Mater Trans A 36A:345Google Scholar
  37. 37.
    Witkin DB, Lavernia EJ (2006) Prog Mater Sci 51:1CrossRefGoogle Scholar
  38. 38.
    Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Scr Mater 54:1175CrossRefGoogle Scholar
  39. 39.
    Han BQ, Zhang Z, Lavernia EJ (2005) Philos Magn Lett 85:97CrossRefGoogle Scholar
  40. 40.
    Roy I, Chauhan M, Mohamed FA (2006) Metall Mater Trans A 37A:721Google Scholar
  41. 41.
    Tang F, Schoenung JM (2006) A paper in preparationGoogle Scholar
  42. 42.
    Beck PA, Kremer JC, Demer LJ, Holzworth ML (1948) Trans TMS-AIME 175:372Google Scholar
  43. 43.
    Burke JE (1949) Trans TMS-AIME 180:73Google Scholar
  44. 44.
    Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143CrossRefGoogle Scholar
  45. 45.
    Chang SY, Lee JG, Park KT, Shin DH (2001) Mater Trans 42:1074CrossRefGoogle Scholar
  46. 46.
    Koch CC, Morris DG, Lu K, Inoue A (1999) MRS Bull 24:54Google Scholar
  47. 47.
    Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912CrossRefGoogle Scholar
  48. 48.
    Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Scr Mater 49:297CrossRefGoogle Scholar
  49. 49.
    Pao PS (2005) Unpublished data on fracture toughness of cryomilled Al alloysGoogle Scholar
  50. 50.
    Witkin D, Han BQ, Lavernia EJ (2006) Metall Mater Trans A 37A:185Google Scholar
  51. 51.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scr Mater 54:251CrossRefGoogle Scholar
  52. 52.
    Weertman JR (1993) Mater Sci Eng A166:161Google Scholar
  53. 53.
    Hull D, Bacon DJ (1984) Introduction to dislocations. Pergamon Press, OxfordGoogle Scholar
  54. 54.
    Kim YW, Bidwell LR (1982) Scr Metall 16:799CrossRefGoogle Scholar
  55. 55.
    Wilsdorf HGF, Kuhlmann-Wilsdorf D (1993) Mater Sci Eng A164:1Google Scholar
  56. 56.
    Last HR, Garrett RK (1996) Metall Mater Trans A 27A:737Google Scholar
  57. 57.
    Mukai T, Kawazoe M, Higashi K (1998) NanoStructured Mater 10:755CrossRefGoogle Scholar
  58. 58.
    Hayes RW, Rodriguez R, Lavernia EJ (2001) Acta Mater 49:4055CrossRefGoogle Scholar
  59. 59.
    Hasegawa T, Miura T, Takahashi T, Yakou T (1992) ISIJ Int 32:902Google Scholar
  60. 60.
    Sun XK, Cong HT, Sun M, Yang MC (2000) Metall Mater Trans A 31A:1017Google Scholar
  61. 61.
    Champion Y, Langlois C, Guerin-Mailly S, Langlois P, Bonnentien J-L, Hytch MJ (2003) Science 300:310CrossRefGoogle Scholar
  62. 62.
    Kuhlmann-Wilsdorf D, Wilsdorf HGF (1992) Phys Status Solidi (a) 172:235Google Scholar
  63. 63.
    Dehiya BS, Weertman JR (1997) In: Earthman JC, Mohamed FA (eds) Creep and fracture of engineering materials and structures. The Minerals, Metals & Materials Society, p 129Google Scholar
  64. 64.
    Kuhlmann-Wilsdorf D (1999) Philos Magn A 79:955CrossRefGoogle Scholar
  65. 65.
    Kral R (1996) Phys Status Solidi (a) 157:255CrossRefGoogle Scholar
  66. 66.
    Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergamon, New York, p 127Google Scholar
  67. 67.
    Hariprasad S, Sastry SML, Jerina KL (1996) Acta Mater 44:383CrossRefGoogle Scholar
  68. 68.
    Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Acta Mater 52:4259CrossRefGoogle Scholar
  69. 69.
    Han BQ, Mohamed FA, Bampton CC, Lavernia EJ (2005) Metall Mater Trans A 36A:2081Google Scholar
  70. 70.
    Lesuer DR, Syn CK, Sherby OD, Wadsworth J, Lewandowski JJ, Hunt JWH (1996) Int Mater Rev 41:169Google Scholar
  71. 71.
    Soboyejo W (2003) Mechanical properties of engineered materials. Marcel Dekker, Inc., New York, p 583Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • B. Q. Han
    • 1
  • J. Ye
    • 1
  • F. Tang
    • 1
  • J. Schoenung
    • 1
  • E. J. Lavernia
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations