Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5369–5374 | Cite as

LiMn2O4 particles prepared by spray pyrolysis from spray solution with citric acid and ethylene glycol

  • Seo Hee Ju
  • Do Youp Kim
  • Eun Byul Jo
  • Yun Chan KangEmail author
Article

Abstract

Spinel LiMn2O4 particles with fine sizes and regular morphologies were successfully synthesized by ultrasonic spray pyrolysis at the severe preparation conditions from a spray solution with citric acid and ethylene glycol. The as-prepared particles with spherical shapes, porous structures and micron sizes turned into LiMn2O4 particles with submicron size and narrow size distribution at the post-treatment temperature of 800 °C. The discharge capacities of the particles prepared from the spray solution with citric acid and ethylene glycol changed from 90 to 127 mAh/g when the post-treatment temperature was changed from 700 to 1,000 °C. The LiMn2O4 particles had maximum discharge capacities at the post-treatment temperature of 800 °C. The discharge capacity of the LiMn2O4 particles dropped from 127 to 108 mAh/g by the 30th cycle.

Keywords

Citric Acid Discharge Capacity Short Residence Time Spray Solution Ultrasonic Spray Pyrolysis 

References

  1. 1.
    Reimers JN, Daha JR (1992) J. Electrochem Soc 139:2091CrossRefGoogle Scholar
  2. 2.
    Guan J, Liu M (1998) Solid State Ionics 110:21CrossRefGoogle Scholar
  3. 3.
    Dell RM (2000) Solid State Ionics 134:139CrossRefGoogle Scholar
  4. 4.
    Ammundsen B, Paulsen J (2001) Adv Mater 13:943CrossRefGoogle Scholar
  5. 5.
    Jones SD, Akridge JR (1994) Solid State Ionics 69:357CrossRefGoogle Scholar
  6. 6.
    Xia Y, Zhou Y, Yoshio M (1997) J Electeochem Soc 144:115Google Scholar
  7. 7.
    Tarascon JM, Guyomard D (1993) Electrochim Acta 38:1221CrossRefGoogle Scholar
  8. 8.
    Ohzuku T, Kitagawa M, Hirai T (1990) J Electrochem Soc 137:769CrossRefGoogle Scholar
  9. 9.
    Tarascon JM, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  10. 10.
    Guyomard D, Tarascon JM (1991) J Electrochem Soc 138:2864CrossRefGoogle Scholar
  11. 11.
    Ogihara T, Yanagawa T, Ogata N, Yoshida K, Mizuno Y, Yonezawa S, Takashima M, Nagata N, Ogawa K (1993) Denki Kagaku Oyobi Kogyo Butsuri Kagaku 61:1339Google Scholar
  12. 12.
    Ogihara T, Saito Y, Yanagawa T, Ogata N, Yoshida K, Takashima M, Yonezawa S, Mizuno Y, Nagata N, Ogawa K (1993) J Ceram Soc Jpn 101:1159CrossRefGoogle Scholar
  13. 13.
    Li Y, Wan C, Wu Y, Jiang C, Zhu Y (2000) J Power Sources 85:294CrossRefGoogle Scholar
  14. 14.
    Chen CH, Buysman AAJ, Kelder EM, Schoonman J (1995) Solid State Ionics 80:1CrossRefGoogle Scholar
  15. 15.
    Kawamura T, Makidera M, Okada S, Koga K, Miura N, Yamaki J (2005) J Power Sources 146:27CrossRefGoogle Scholar
  16. 16.
    Gu Y, Chen D, Jiao X (2005) J Phys Chem B 109:17901CrossRefGoogle Scholar
  17. 17.
    Shlyakhtin OA, Choi SH, Yoon YS, Oh YJ (2004) Electrochim Acta 50:511CrossRefGoogle Scholar
  18. 18.
    Tsuji T, Kakita T, Hamagami T, Kawamura T, Yamaki J, Tsuji M (2004) Chem Lett 33:1136CrossRefGoogle Scholar
  19. 19.
    Choi SH, Kim JS, Yoon YS (2004) J Power Sources 135:286CrossRefGoogle Scholar
  20. 20.
    Liu J, Wen Z, Gu Z, Wu M, Lin Z (2002) J Electrochem Soc 149:A1405CrossRefGoogle Scholar
  21. 21.
    Lju W, Kowal K, Farrington GC (1996) J Electrochem. Soc 143:3590CrossRefGoogle Scholar
  22. 22.
    Lju W, Farrington GC, Chaput F, Dunn B (1996) J Electrochem Soc 143:876Google Scholar
  23. 23.
    Gadjov H, Corova M, Kotzeva V, Avdeev G, Uzunova S, Kovacheva D (2004) J Power Sources 134:110CrossRefGoogle Scholar
  24. 24.
    Hwang KT, Um WS, Lee HS, Song JK, Chung KW (1998) J Power Sources 74:169CrossRefGoogle Scholar
  25. 25.
    Sahaya Prabaharan SR, Siluvai Michael M, Kumar TP, Mani A, Athinarayanaswamy K, Gangadharan R (1995) J Mater Chem 5:1035CrossRefGoogle Scholar
  26. 26.
    Kang YC, Park SB (1999) Jpn J Appl Phys 38:L1541CrossRefGoogle Scholar
  27. 27.
    Shimomura Y, Kijima N (2004) J Electrochem Soc 151:H192CrossRefGoogle Scholar
  28. 28.
    Shimomura Y, Kijima N (2004) J Electrochem Soc 151:H86CrossRefGoogle Scholar
  29. 29.
    Kang YC, Roh HS, Park SB (2000) Adv Mater 12:451CrossRefGoogle Scholar
  30. 30.
    Sohn JR, Kang YC, Park HD (2002) Jpn J Appl Phys 41:3006CrossRefGoogle Scholar
  31. 31.
    Matsuda K, Taniguchi I (2004) J Power Sources 132:156CrossRefGoogle Scholar
  32. 32.
    Taniguchi I, Lim CK, Song D, Wakihara M (2002) Solid State Ionics 146:239CrossRefGoogle Scholar
  33. 33.
    Matsuda K, Taniguchi I (2003) Kagaku Kogaku Ronbunshu 29:232CrossRefGoogle Scholar
  34. 34.
    Taniguchi I (2005) Mater Chem Phys 92:172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Seo Hee Ju
    • 1
  • Do Youp Kim
    • 1
  • Eun Byul Jo
    • 1
  • Yun Chan Kang
    • 1
    Email author
  1. 1.Department of Chemical EngineeringKonkuk UniversityGwangjin-gu, SeoulRepublic of Korea

Personalised recommendations