Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5340–5346 | Cite as

Formation of monetite nanoparticles and nanofibers in reverse micelles

  • Kun Wei
  • Chen LaiEmail author
  • Yingjun Wang
Article

Abstract

Reverse micelles solution of water and cyclohexane containing either cetyltrimethylammonium bromide (CTAB) or polyoxyethylene-8-dodecyl ether (C12E8) surfactants and n-pentanol as co-surfactant have been used as organized reaction microenvironments for monetite (dicalcium phosphate anhydrous, DCPA) precipitation. Well-crystallized monetite nanoparticles with various morphologies such as spheres, nanofibers and bundles of nanowires were obtained in CTAB reverse micelles solution. The molar ratio of water and surfactant (Wo) and the molar ratio of co-surfactant and surfactant (Po) have great influence on the structure and morphology of the final products. A generalized mechanism for the growth of monetite in reverse micelles is proposed, in which the interaction between the surfactant molecules and PO 4 3− ions leads to the formation of a surfactant/CaHPO4 complex. It is because of this central complex that the further fusion with reactant ions containing reverse micelles will occur only in one direction. Changing the content of water and co-surfactant has great influence on the morphology of reverse micelles and on the interaction between the surfactant/CaHPO4 complex leading to a fine tuning of the morphology of products. By contrast, lacking of this interaction in the C12E8 system only tablet amorphous calcium phosphate can be formed.

Keywords

Surfactant Calcium Phosphate Surfactant Molecule Reverse Micelle Calcium Phosphate Cement 

Notes

Acknowledgements

The authors acknowledge the financial supports for this study from National Natural Science Foundation of China (NSFC) Project Grant (50272021, 59932050, and 50472054), Natural Science Foundation Cooperative Project Grant of Guangdong (04205786). We also thank Dr. B. Léon for her helpful comments and suggestions.

References

  1. 1.
    Daudon M, Donsimoni R, Hennequin C, Fellahi S, Le MG, Paris M, Troupel S, Lacour B (1995) Urol Res 23:319CrossRefGoogle Scholar
  2. 2.
    Werness PG, Bergert JH, Smith LH (1982) J Cryst Growth 53:166CrossRefGoogle Scholar
  3. 3.
    DeGroot K (1983) Bioceramics of calcium phosphate. Florida CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Williams DF, (1985) Biocompatibility of tissue analogs, vol 11. Florida CRC Press, Boca RationGoogle Scholar
  5. 5.
    Shwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD (1999) Adv Dent Res 13:38CrossRefGoogle Scholar
  6. 6.
    Andrés-Vergés M, Fernández-Gpmzález C, MartÍnez-Gallego M (1998) J Euro Ceram Soc 18:1245CrossRefGoogle Scholar
  7. 7.
    Huang LM, Wang HT, Wang ZB, Mitra AP, Zhao DY, Yan YS (2002) Chem Mater 14:876CrossRefGoogle Scholar
  8. 8.
    Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Appl Phys Lett 79:1039CrossRefGoogle Scholar
  9. 9.
    Duan X, Lieber XM (2000) Adv Mater 12:298CrossRefGoogle Scholar
  10. 10.
    Jana NR, Gearheart L, Murphy CJ (2001) Adv Mater 13:1389CrossRefGoogle Scholar
  11. 11.
    Sui XM, Chu Y, Xing SX, Yu M, Liu CZ (2004) Mater Lett 58:1255CrossRefGoogle Scholar
  12. 12.
    Hirai T, Asada Y, Komasawa I (2004) J Colloid Interf Sci 276:339CrossRefGoogle Scholar
  13. 13.
    Uskokovic V, Drofenik M, Ban I (2004) J Magn Magn Mater 284:294CrossRefGoogle Scholar
  14. 14.
    Liu Y, Zhang Z (2002) In: Wang ZL (ed) Handbook of nanophase and nanostructured materials-synthesis. Tsinghua University Press, Bei Jing, p 9Google Scholar
  15. 15.
    Pileni MP (1993) J Phys Chem 97:6961CrossRefGoogle Scholar
  16. 16.
    Clark S, Fletcher PDI, Ye X (1990) Langmuir 6:301CrossRefGoogle Scholar
  17. 17.
    Senger B, Brès EF, Hutchison JL, Voegel JC, Frank RM (1992) Philos Mag A 65:665CrossRefGoogle Scholar
  18. 18.
    Y Li, Li YD, Deng ZX, Zhuang J, Sun XM (2001) Inter J Inorg Mater 3:633CrossRefGoogle Scholar
  19. 19.
    Faeder J, Ladanyi BM (2000) J Phys Chem B 104:1033CrossRefGoogle Scholar
  20. 20.
    Törnblom M, Henriksson U (1997) J Phys Chem B 101:6028CrossRefGoogle Scholar
  21. 21.
    Hopwood JD, Mann S (1997) Chem Mater 9:1819CrossRefGoogle Scholar
  22. 22.
    Li M, Mann S (2000) Langmuir 16:7088CrossRefGoogle Scholar
  23. 23.
    Jinawath S., Polchai D., Yoshimura M (2002) Mater Sci Eng C 22:35CrossRefGoogle Scholar
  24. 24.
    Braun PV, Stupp SI (1999) Mater Res Bull 34:463CrossRefGoogle Scholar
  25. 25.
    Curri ML, Agostinao A, Manna L, Monica MD, Catalano M, Chiavarone L, Spangnolo V, Lugará M (2000) J Phys Chem B 104:8391CrossRefGoogle Scholar
  26. 26.
    Palazzo G, Lopez F, Giustini M, Colafemmina G, Ceglie A (2003) J Phys Chem B 107:1924CrossRefGoogle Scholar
  27. 27.
    Sarda S, Heughebaert M, Lebugle A (1999) Chem Mater 11:2722CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Key Laboratory of Specially Function Materials and Advanced Manufacturing Technology of Ministry of EducationSouth China university of TechnologyGuangzhouChina
  2. 2.Biomaterials Lab, College of Materials Science and EngineeringSouth China university of TechnologyGuangzhouChina

Personalised recommendations