Journal of Materials Science

, Volume 42, Issue 14, pp 5381–5390 | Cite as

The effect of porogen on physical properties in MTMS–BTMSE spin-on organosilicates

  • B. R. KimEmail author
  • J. M. Son
  • M. J. Ko


Decreasing the circuit dimensions is driving the need for low-k materials with a lower dielectric constant to reduce RC delay, crosstalk, and power consumption. In case of spin-on organosilicate low-k films, the incorporation of a porogen is regarded as the only foreseeable route to decrease dielectric constant of 2.2 or below by changing a packing density. In this study, methyltrimethoxysilane (MTMS)–bis(trimethoxysilyl)ethane (BTMSE) copolymers that had superior mechanical properties than MSSQ (methyl-silsesquioxane) were blended with amphiphilic block copolymers used as sacrificial pore generators. While adding up to 40 wt.% porogen into MTMS:BTMSE = 100:50 matrix, optical, electrical, and mechanical properties were measured and the pore structure was also characterized by positron annihilation lifetime spectroscopy (PALS). The result confirmed that there existed a tradeoff in attaining the low dielectric constant and desirable mechanical strength, and no more pores than necessary to achieve the dielectric objective should be incorporated. When the dielectric constant was fixed to approximately 2.3 by controlling BTMSE and porogen contents simultaneously, the thermo-mechanical properties of the porous films were also investigated for the comparison purpose. Under the same dielectric constant, the concurrent increase in BTMSE and porogen contents led to improvement in modulus measured by the nanoindentation technique but deterioration of adhesion strength obtained by the modified edge lift-off test.


Residual Stress Dielectric Constant Porous Film Copolymer Film Positron Annihilation Lifetime Spectroscopy 


  1. 1.
    International technology roadmap for semiconductors. Semiconductor Industry Association, San Jose, CA (2003)Google Scholar
  2. 2.
    Hougham G, Tesoro G, Viehbeck A, Chapple-Sokol JD (1994) Macromolecules 27:5964CrossRefGoogle Scholar
  3. 3.
    Lee S, Park J-W (1996) J Appl Phys 80:5260CrossRefGoogle Scholar
  4. 4.
    Ho S, Leu J, Morgan M, Kiene M, Zhao J-H, Hu C (2003) In: Murarka SP, Eizenberg M, Shina AK (eds) Interlayer dielectrics for semiconductor technologies. Elsevier Academic Press, London, p 167Google Scholar
  5. 5.
    Miller RD, Beyers R, Carter KR, Cook RF, Harbison M, Hawker CJ, Hedrick JL, Lee VY, Liniger E, Nguyen C, Remenar J, Sherwood M, Trollsas M, Volksen W, Yoon DY (1999) Res Mater Soc Symp Proc 565:3CrossRefGoogle Scholar
  6. 6.
    Huang QR, Volksen W, Huang E, Toney M, Frank CW, Miller RD (2002) Chem Mater 14:3676CrossRefGoogle Scholar
  7. 7.
    Yang S, Mirau PA, Pai C-S, Nalamasu O, Reichmanis E, Pai JC, Obeng YS, Seputro J, Lin EK, Lee H-J, Sun J, Gidley DW (2002) Chem Mater 14:369CrossRefGoogle Scholar
  8. 8.
    Padovani AM, Riester L, Rhodes L, Allen SAB, Kohl PA (2002) J Electrochem Soc 149:F171CrossRefGoogle Scholar
  9. 9.
    Toivola Y, Thurn J, Cook RF (2002) J Electrochem Soc 149:F9CrossRefGoogle Scholar
  10. 10.
    Liu W-C, Yu Y-Y, Chen W-C (2003) Mater Res Mater Soc Symp Proc 766:E7.10Google Scholar
  11. 11.
    Toivola Y, Kim S, Cook RF, Char K, Lee J-K, Yoon DY, Rhee H-W, Kim SY, Jin MY (2004) J Electrochem Soc 151:F45CrossRefGoogle Scholar
  12. 12.
    Kim BR, Kang JW, Lee KY, Son JM, Ko MJ (2007) Physical properties of low-k films based on the co-condensation of methyltrimethoxysilane with a bridged silsesquioxane. J Mater Sci. DOI 10.1007/s10853-006-0575-9Google Scholar
  13. 13.
    Tompkins HG (1993) A user’s guide to ellipsometry. Academic Press, BostonGoogle Scholar
  14. 14.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  15. 15.
    Zhao J-H, Malik I, Ryan T, Ogawa ET, Ho PS, Shih W-Y, McKerrow AJ, Taylor KJ (1999) Appl Phys Lett 74:944CrossRefGoogle Scholar
  16. 16.
    Shaffer II EO, McGarry FJ, Hoang L (1996) Polym Eng Sci 36:2375CrossRefGoogle Scholar
  17. 17.
    Gidley DW, Frieze WE, Dull TL, Sun J, Yee AF, Nguyen CV, Yoon DY (2000) Appl Phys Lett 76:128CrossRefGoogle Scholar
  18. 18.
    Sun JN, Hu YF, Freize WE, Gidley DW (2003) Radiat Phys Chem 68:345CrossRefGoogle Scholar
  19. 19.
    Dull TL, Frieze WE, Gidley DW, Sun JN, Yee AF (2001) J Phys Chem B 105:4657CrossRefGoogle Scholar
  20. 20.
    Baklanov MR, Mogilnikov KP (2002) Microelectron Eng 64:335CrossRefGoogle Scholar
  21. 21.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, MA, p 186CrossRefGoogle Scholar
  22. 22.
    Williford RE, Li XS, Addleman RS, Fryxell GE, Baskaran S, Birnbaum JC, Coyle C, Zemanian TS, Wang C, Courtney AR (2005) Micropor Mesopor Mater 85:260CrossRefGoogle Scholar
  23. 23.
    Gross J, Fricke J (1997) J Non-Cryst Solids 95/96:1197Google Scholar
  24. 24.
    Woignier T, Reynes J, Hafidi Alaoui A, Beurroies I, Phalippou J (1999) J Non-Cryst Solids 241:45CrossRefGoogle Scholar
  25. 25.
    Moner-Girona M, Roig A, Molins E, Martinez E, Esteve J (1999) Appl Phys Lett 75:653CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Perez MA, Alonso O, Duijsens A, Saja JA (1998) J Polym Sci, Part B: Polym Phys 36:2587CrossRefGoogle Scholar
  27. 27.
    Gostein M, Mazurenko A, Maznev AA, Schulberg MT (2004) Micro 22(5):51Google Scholar
  28. 28.
    Vallery RS, Peng H-G, Frieze WE, Gidley DW, Moore DL, Carter RJ (2005) Res Mater Soc Symp Proc 863:B1.6.1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.LG Chem. Ltd., Research ParkDaejeonKorea

Personalised recommendations