Journal of Materials Science

, Volume 42, Issue 11, pp 4110–4114 | Cite as

Study of preparation and magnetic properties of silica-coated cobalt ferrite nanocomposites

  • Lijun Zhao
  • Hua YangEmail author
  • Yuming Cui
  • Xueping Zhao
  • Shouhua Feng


The structure and the magnetic properties of silica-coated cobalt ferrite nanoparticles (80 wt% CoFe2O4), prepared by sol–gel method and submitted to thermal treatments in the range 800–1,000 °C, were investigated through XRD, FT-IR, TEM and VSM. The effects of thermal treatment temperatures on the structure and magnetic properties of nanoparticles were examined. A silica shell thickness of about 5 nm was synthesized on top of cobalt ferrite nanoparticles. The non-crystalline silica confines the growth of cobalt ferrite nanoparticles, i.e., the particle sizes are almost independent of the thermal treatment. Saturation magnetization (Ms) was decreased slightly and coercivity (Hc) was increased, when the non-crystalline silica was coated on the surface of cobalt ferrite nanoparticles.


Ferrite Crystallite Size CoFe2O4 Silica Shell CoFe2O4 Nanoparticles 



This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 50372025 and 50572033).


  1. 1.
    Tsoukatos A, Wan H, Hadjipanayis GC, Papaefthymiou V, Kostikas A, Simopoulos A (1993) J Appl Phys 72:6967CrossRefGoogle Scholar
  2. 2.
    Ohmori M, Matijevic E (1992) J Colloid Interface Sci 150:594CrossRefGoogle Scholar
  3. 3.
    Ohmori M, Matijevic E (1993) J Colloid Interface Sci 160:288CrossRefGoogle Scholar
  4. 4.
    Philipse AP, van Bruggen MPB, Pathmamanoharan C (1994) Langmuir 10:92CrossRefGoogle Scholar
  5. 5.
    (a) Kurmoo M (1999) Chem Mater 11:3370; (b) Kurmoo M, Kepert, CJ (1998) New J Chem 1525; (c) Kurmoo M, Kumagai H, Green MA, Lovett BW, Blundell SJ, Ardavan A, Singleton J (2001) J Solid State Chem 159:343Google Scholar
  6. 6.
    Zachariah MR, Shull RD, McMillin BK, Biswas P (1996) In: Chow GM, Gonsaloves KE (eds) Nanotechnology: molecularly designed materials, ACS Symposium Series, vol 622. ACS, Wasgington, p 42Google Scholar
  7. 7.
    Jacobs IS, Bean CP (1963) In: Rado GT, Suhl H (eds) Magnetism, vol 3. Academic Press, NewYork, Ch. 6Google Scholar
  8. 8.
    Anmar S, Helfen A, Jouini N, Fiévet F, Rosenman I, Villain F, Molinié P, Donot M (2001) J Mater Chem 11:186CrossRefGoogle Scholar
  9. 9.
    Plocek J, Hutlová A, Nižňanský D, Buršίk J, Rehspringer J-L, Mička Z (2003) J Non Cryst Soli 315:70CrossRefGoogle Scholar
  10. 10.
    del Monte F, Morales MP, Levy D (1997) Langmuir 13:3627CrossRefGoogle Scholar
  11. 11.
    Li G-S, Li L-P, Smith RL Jr, Inomata H (2001) J Mol Struct 560:87CrossRefGoogle Scholar
  12. 12.
    Bruni S, Cariati F, Casu M, Lai A, Musinu A, Picccaluga G, Solinas S (1999) Nanostruct Mater 11:573CrossRefGoogle Scholar
  13. 13.
    Hui Huang X, Chen Z (2004) J Crystal Growth 271:287CrossRefGoogle Scholar
  14. 14.
    Chikazumi S (1964) Physics of magnetism, Wiley, New York, NY, p 411Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lijun Zhao
    • 1
  • Hua Yang
    • 1
    Email author
  • Yuming Cui
    • 1
  • Xueping Zhao
    • 2
  • Shouhua Feng
    • 3
  1. 1.College of ChemistryJilin UniversityChangchunP.R. China
  2. 2.College of PhysicsJilin UniversityChangchunP.R. China
  3. 3.State Key Laboratory of Inorganic Synthesis and Prepartive ChemistryJilin UniversityChangchunP.R. China

Personalised recommendations