Journal of Materials Science

, Volume 41, Issue 23, pp 7872–7878 | Cite as

Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf

  • C. M. McCarter
  • R. F. Richards
  • S. Dj. Mesarovic
  • C. D. Richards
  • D. F. BahrEmail author
  • D. McClain
  • J. Jiao


We describe the micro-mechanical properties of vertically aligned carbon nanotubes (VACNTs) fabricated using a photolithographically patterned iron catalyst prepared using sol–gel techniques. The carbon nanotubes (CNTs) were grown via chemical vapor deposition. The relative mechanical stiffness of the resultant structure was measured using nanoindentation based techniques and is shown to be related to the number of contact sites between tubes. Elastic deformation occurs during compression at large strains, however energy is dissipated during deformation, likely through tube–tube interactions. The effective elastic modulii are depth dependent, due to the compression of pre-buckled geometries. The effective elastic modulii range between 0.03 and 0.08 GPa for a low number of contact sites and 0.1 and 0.3 GPa for a high number of contact sites.


Contact Site Effective Elastic Modulus Catalyst Particle Size Buffer Oxide Etchant Load Depth Curve 



The authors thank the National Science Foundation under grant number CTS-0404370 and the US Army SMDC under contract number DASG60-02-C-0084 for the financial support of this project.


  1. 1.
    Dresselhaus MS, Eklund PC (2000) Adv Phys 49:705CrossRefGoogle Scholar
  2. 2.
    Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4613CrossRefGoogle Scholar
  3. 3.
    Hone J, Batlogg B, Bener Z, Johnson AT, Fischer JE (2000) Science 289:1730CrossRefGoogle Scholar
  4. 4.
    Shimizu T, Abe H, Ando A, Nakayama Y, Tokumoto H (2005) Surf Interface Anal 37:204CrossRefGoogle Scholar
  5. 5.
    Kiang C-H, Goddard WA, Beyers R, Bethune DS (1995) Carbon 33:903CrossRefGoogle Scholar
  6. 6.
    Mylvaganam K, Zhang LC (2004) Carbon 42:2025CrossRefGoogle Scholar
  7. 7.
    Salvetat J-P, Kulik AJ, Bonard JM, Briggs GAD, Stockli T, Metenier K, Bonnamy S, Beguin F, Burnham NA, Forro L (1990) Adv Mater 11:161CrossRefGoogle Scholar
  8. 8.
    Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Nat Mater 4:134CrossRefGoogle Scholar
  9. 9.
    Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Mater Sci Eng A 334:173CrossRefGoogle Scholar
  10. 10.
    Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Nature 388:52CrossRefGoogle Scholar
  11. 11.
    Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KKJ (2003) Mech Phys Solids 51:2213CrossRefGoogle Scholar
  12. 12.
    Kinoshia H, Kume I, Tagawa M, Ohmae N (2004) Appl Phys Lett 85:2780CrossRefGoogle Scholar
  13. 13.
    Poggi MA, Boyles JS, Bottomley LA, McFarland AW, Colton JS, Nguyen CV, Stevens RS, Lillehei PT (2004) Nanoletters 4:1009CrossRefGoogle Scholar
  14. 14.
    Christensen AO, Jacob JP, Richards CD, Bahr DF, Richards RF (2003) In: Shoji S (ed) The 12th International conference on solid state sensors, actuators and microsystems, Boston, (IEEE 2003), p 1427Google Scholar
  15. 15.
    Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TH, Ruoff RS (2000) Science 287:637CrossRefGoogle Scholar
  16. 16.
    Demczyk BG, Wang YM, Cummings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Mater Sci Eng A334:173CrossRefGoogle Scholar
  17. 17.
    Dong L, Jiao J, Pan C, Tuggle DW (2004) Appl Phys A 78:9CrossRefGoogle Scholar
  18. 18.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  19. 19.
    Cheung CL, Kurtz A, Park H, Lieber CM (2002) J Phys Chem B 106:2429CrossRefGoogle Scholar
  20. 20.
    Ishida M, Hongo H, Nihey F, Ochiai Y (2004) Jpn J Appl Phys 43:L1356CrossRefGoogle Scholar
  21. 21.
    Encheva G, Samuneva B, Djambaski P, Kashchieva E, Paneva D, Mitov I (2004) J Non-Cryst Solids 345,346:615CrossRefGoogle Scholar
  22. 22.
    Yu M-F, Kowalewski T, Rouff RS (2000) Phys Rev Lett 85:1456CrossRefGoogle Scholar
  23. 23.
    Kis A, Csanyi G, Salvetat J-P, Thien-Nga L, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Nat Mater 3:153–157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • C. M. McCarter
    • 1
  • R. F. Richards
    • 1
  • S. Dj. Mesarovic
    • 1
  • C. D. Richards
    • 1
  • D. F. Bahr
    • 1
    Email author
  • D. McClain
    • 2
  • J. Jiao
    • 2
  1. 1.Mechanical and Materials EngineeringWashington State UniversityPullman USA
  2. 2.Department of PhysicsPortland State UniversityPortlandUSA

Personalised recommendations