Journal of Materials Science

, Volume 41, Issue 23, pp 8001–8012 | Cite as

Structural, photophysical and photocatalytic properties of Bi2MTaO7 (M = La and Y)

  • Jing-Fei LuanEmail author
  • Xi-Ping Hao
  • Shou-Rong Zheng
  • Guo-You Luan
  • Xiao-Shan Wu


Bi2MTaO7 (M = Y and La) were synthesized by solid-state reaction method and their structural and photocatalytic properties were investigated. The results indicated that these compounds crystallize in the pyrochlore-type structure, cubic system with space group Fd-3 m. In addition, the band gaps of Bi2LaTaO7 and Bi2YTaO7 were estimated to be about 2.17(3) and 2.22(7) eV, respectively. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water respectively with Bi2MTaO7 (M = Y and La) as the photocatalysts under ultraviolet light irradiation. Photocatalytic degradation of aqueous methylene blue (MB) dye over these compounds was further investigated under visible light irradiation. Bi2MTaO7 (M = Y and La) showed markedly higher catalytic activity compared to P-25 for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was observed after visible light irradiation for 190 min with Bi2LaTaO7 as the photocatalyst and for 200 min with Bi2YTaO7 as the photocatalyst. The decrease of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 , demonstrated the continuous mineralization of aqueous MB during the photocatalytic process.


Methylene Blue Total Organic Carbon Photocatalytic Activity Visible Light Irradiation Photocatalytic Property 



This work was supported by a grant from the Natural Science Foundation of Jiangsu Province (No. BK2006130).


  1. 1.
    Honda K, Fujishima A (1972) Nature 238:37CrossRefGoogle Scholar
  2. 2.
    Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625CrossRefGoogle Scholar
  3. 3.
    Zou Z, Ye J, Arakawa H (2002) J Phys Chem B 106:13098CrossRefGoogle Scholar
  4. 4.
    Zou Z, Ye J, Arakawa H (2000) J Mater Sci Lett 19:1909CrossRefGoogle Scholar
  5. 5.
    Anpo M, Takeuchi M (2003) J Catal 216:505CrossRefGoogle Scholar
  6. 6.
    Malato S, Blanco J, Cáceres J, Fernández-Alba AR, Agüera A, Rodríguez A (2002) Catal Today 76:209CrossRefGoogle Scholar
  7. 7.
    Kodama T, Isobe Y, Kondoh Y, Yamaguchi S, Shimizu KI (2004) Energy 29:895CrossRefGoogle Scholar
  8. 8.
    Guan GQ, Kida T, Yoshida A (2003) Appl Catal B: Environ 41:387CrossRefGoogle Scholar
  9. 9.
    Guan GQ, Kida T, Harada T, Isayama M, Yoshida A (2003) Appl Catal A: General 249:11CrossRefGoogle Scholar
  10. 10.
    Zou Z, Ye J, Arakawa H (2001) Chem Mater 13:1765CrossRefGoogle Scholar
  11. 11.
    Zou Z, Ye J, Arakawa H (2002) J Phys Chem B 106:517CrossRefGoogle Scholar
  12. 12.
    Kudo A, Kato H, Nakagawa S (2000) J Phys Chem B 104:571CrossRefGoogle Scholar
  13. 13.
    Zou Z, Ye J, Arakawa H (2000) Chem Phys Lett 332:271CrossRefGoogle Scholar
  14. 14.
    Zou Z, Ye J, Oka K, Nishihara Y (1998) Phys Rev Lett 80:1074CrossRefGoogle Scholar
  15. 15.
    Tang J, Zou Z, Yin J, Ye J (2003) Chem Phys Lett 382:175CrossRefGoogle Scholar
  16. 16.
    Matos J, Laine J, Herrmann JM (2001) J Catal 200:10CrossRefGoogle Scholar
  17. 17.
    Qu P, Zhao J, Shen T, Hidaka H (1998) J Mol Catal A 129:257CrossRefGoogle Scholar
  18. 18.
    Xu YM, Langford CH (2001) Langmuir 17:897CrossRefGoogle Scholar
  19. 19.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  20. 20.
    Li FB, Li XZ (2002) Appl Catal A 228:15CrossRefGoogle Scholar
  21. 21.
    Li FB, Li XZ (2002) Chemosphere 48:1103CrossRefGoogle Scholar
  22. 22.
    Kramer MJ, Dennis KW, Falzgraf D, Mccallum RW, Malik SK, Yelon WB (1997) Phys Rev B 56:5512CrossRefGoogle Scholar
  23. 23.
    Tung LC, Chen JC, Wu MK, Guan W (1999) Phys Rev B 59:4504CrossRefGoogle Scholar
  24. 24.
    Bernard D, Pannetier J, Lucas J (1978) Ferroelectrics 21:429CrossRefGoogle Scholar
  25. 25.
    Golovshchikove GI, Isupov VA, Tutov AG, Nikove AG, Myl IE, Nikitina PA, Tulinova OI (1973) Sov Phys Solid State 14:2539Google Scholar
  26. 26.
    Izumi F, Crystallogr J (1985) Assoc Jpn 27:23Google Scholar
  27. 27.
    Xu J, Emge T, Ramanujachary KV, Hohn P, Greenblatt M (1996) J Solid State Chem 125:192CrossRefGoogle Scholar
  28. 28.
    Butler MA (1977) J Appl Phys 48:1914CrossRefGoogle Scholar
  29. 29.
    Tauc J, Grigorovici R, Vancu A (1966) Phys Stat Sol 15:627CrossRefGoogle Scholar
  30. 30.
    Wang JH, Zou ZG, Ye JH (2003) Functionally Graded Materials VII Materials Science Forum 423:485Google Scholar
  31. 31.
    Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guilard C, Herrmann JM (2002) Appl Catal B 39:75CrossRefGoogle Scholar
  32. 32.
    Oshikiri M, Boero M, Ye J, Zou Z, Kido G (2002) J Chem Phys 117:7313CrossRefGoogle Scholar
  33. 33.
    Subramanian MA, Aravamudan G, Subba Rao GV (1983) Prog Solid State Chem 15:55CrossRefGoogle Scholar
  34. 34.
    Inoue Y, Kohno M, Ogura S, Sato K (1997) Chem Phys Lett 267:72CrossRefGoogle Scholar
  35. 35.
    Wiegel M, Middel W, Blasse G (1995) J Mater Chem 5:981CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jing-Fei Luan
    • 1
    Email author
  • Xi-Ping Hao
    • 2
  • Shou-Rong Zheng
    • 3
  • Guo-You Luan
    • 4
  • Xiao-Shan Wu
    • 5
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of EnvironmentNanjing UniversityNanjing People’s Republic of China
  2. 2.Department of Materials Science and Engineering,National Laboratory of Solid State MicrostructuresNanjing UniversityNanjing People’s Republic of China
  3. 3.State Key Laboratory of Pollution Control and Resource Reuse, School of EnvironmentNanjing UniversityNanjingPeople’s Republic of China
  4. 4.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian People’s Republic of China
  5. 5.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjing People’s Republic of China

Personalised recommendations