Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7944–7953 | Cite as

Effects of calcium nitride and calcium carbonate gasifying agents on the porosity of Ni3Ti–TiC composites produced by combustion synthesis

  • Douglas E. Burkes
  • Jack Milwid
  • Guglielmo Gottoli
  • John J. Moore
Article
  • 62 Downloads

Abstract

Combustion synthesis or Self-propagating High Temperature Synthesis (SHS) has been used to produce highly porous materials intended for biomedical applications. Two novel gasifying agents, calcium nitride and calcium carbonate, were employed to increase product porosity and pore size during the combustion synthesis reaction for two SHS chemical compositions. A greater increase in apparent porosity of the products was gained using calcium carbonate compared with calcium nitride. Conversely, a greater increase in the number of pores falling within a 101–500 μm range was gained using calcium nitride compared with calcium carbonate. A greater increase in product porosity and pore sizes was observed for the TiC-50 wt% Ni3Ti than the TiC-30 wt% Ni3Ti with both gasifying agents.

Keywords

Ca3N2 Combustion Synthesis Burning Velocity Reaction Front Molar Amount 

Notes

Acknowledgements

The authors wish to thank the Space Products Development directorate of NASA and the Director of the Institute for Space Resources, formerly CCACS, Dr. Michael Duke, for support of this work.

References

  1. 1.
    Munir ZA, Anslemi-Tamburini U (1989) Mater Sci Report 3:227CrossRefGoogle Scholar
  2. 2.
    Munir ZA (1993) J Mat Syn Proc 1(6):387Google Scholar
  3. 3.
    Rice RW, McDonough WJ (1985) J Am Ceram Soc 68(5):C122CrossRefGoogle Scholar
  4. 4.
    German RM (1989) Particle packing characteristics. Metal Powder Industries Federation, New JerseyGoogle Scholar
  5. 5.
    Wakeman RJ (1975) Powder Technol 11:297CrossRefGoogle Scholar
  6. 6.
    Kirdyashkin AI, Maksimov YuM, Merzhanov AG (1981) Fiz Goreniya i Vzryva (Engl Trans) 17(6):10Google Scholar
  7. 7.
    Shkiro VM, Borovinskaya IP (1976) Fiz Goreniya i Vzryva (Engl Trans) 12(6):945Google Scholar
  8. 8.
    Dunmead SD, Munir ZA, Holt JB, Kingman DD (1991) J Mat Sci 26:2410CrossRefGoogle Scholar
  9. 9.
    Shcherbakov VA, Merzhanov AG (1998) Combust Sci Technol 136:253CrossRefGoogle Scholar
  10. 10.
    Ponomarev MA, Sapronov YuA, Shteinberg AS (1996) Combust Expl Shock Waves 32(3):286CrossRefGoogle Scholar
  11. 11.
    Burkes DE, Yi HC, Gottoli G, Moore JJ (2006) J Mat Sci 41:2009CrossRefGoogle Scholar
  12. 12.
    Li BY, Rong L-J, Li Y-Y, Gjunter VE (2000) Acta Mater 48:3895–3904CrossRefGoogle Scholar
  13. 13.
    Ayers RA, Bateman TA, Simske SJ (2000) in Shape memory implants. Springer Verlag, Berlin, p 73CrossRefGoogle Scholar
  14. 14.
    Itin VI, Shevchenko NA, Korosteleva EN, Tukhfatullin AA, Mirgazizov MZ, Gjunter VE (1997) Tech Phys Lett 23(4):294CrossRefGoogle Scholar
  15. 15.
    Bronzino JD (ed) (1995) The biomedical engineering handbook. CRC Press, Boca Raton, FL, p 682Google Scholar
  16. 16.
    Cameron HU (1994) in “Bone implant interface. Mosby, St. Louis, p 145Google Scholar
  17. 17.
    Moore JJ, Schowengerdt FD, Ayers R, Zhang X, Castillo M (2001) in Sixth Inter. Microgravity Comb. Workshop NASA/CP-2001–210826 p 273Google Scholar
  18. 18.
    Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) J Biomed Mater Res 4:433CrossRefGoogle Scholar
  19. 19.
    van Eeden SP, Ripamonti U (1994) Plast Reconstr Surg 93:959CrossRefGoogle Scholar
  20. 20.
    Kim HK, Jang JW, Lee CH (2004) J Mat Sci: Mat in Med 15:825Google Scholar
  21. 21.
    Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) J Biomed Mater Res 25:889CrossRefGoogle Scholar
  22. 22.
    Rich A, Harris AK (1981) J Cell Sci 50:1Google Scholar
  23. 23.
    Thomas K, Cook S (1985) J Biomed Res 19:875CrossRefGoogle Scholar
  24. 24.
    ASTM Designation (1992) C 20–92 p 5Google Scholar
  25. 25.
    LECO Corporation, St. Joseph, MO 49085Google Scholar
  26. 26.
    Merzhanov AG, Sytschev AE (2004) “ISMAN”, http://www.ism.ac.ru/handbook/_shs.htm#prc3, as in May 2004Google Scholar
  27. 27.
    Merzhanov AG (1990) in Combustion and plasma-synthesis of high temperature materials. VCH Publishers, New YorkGoogle Scholar
  28. 28.
    Shteinberg AS, Shcherbakov VA, Marynov VV, Mukhoyan MZ, Merzhanov AG (1991) Sov Phys Dokl (Engl Trans) 36(5):385–387Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Douglas E. Burkes
    • 1
    • 2
  • Jack Milwid
    • 1
  • Guglielmo Gottoli
    • 1
    • 2
  • John J. Moore
    • 1
    • 2
  1. 1.Metallurgical and Materials Engineering DepartmentColorado School of MinesGoldenUSA
  2. 2.Institute for Space Resources (ISR)Colorado School of MinesGoldenUSA

Personalised recommendations