Journal of Materials Science

, Volume 41, Issue 23, pp 7939–7943 | Cite as

Experimental determination of solid–liquid interfacial energy for succinonitrile solid solution in equilibrium with the succinonitrile–(D) camphor eutectic liquid

  • K. Keşlioğlu
  • U. Böyük
  • M. Erol
  • N. MaraşlıEmail author


The equilibrated grain boundary groove shapes for Succinonitrile (SCN) solid solution in equilibrium with the Succinonitrile (SCN)–D Camphor (DC) eutectic liquid were directly observed. From the observed grain boundary groove shapes, the Gibbs–Thomson coefficient and solid–liquid interface energy for SCN solid solution in equilibrium with the SCN–DC eutectic liquid has been determined to be (5.39 ± 0.27) × 10−8 K m and (7.88 ± 0.79) × 10−3 J m−2 with present numerical method and Gibbs–Thomson equation, respectively. The grain boundary energy of SCN rich phase of the SCN–DC eutectic system has been determined to be (14.95 ± 1.79) × 10−3 J m−2 from the observed grain boundary groove shapes. Thermal conductivity ratio of the liquid phase to the solid phase for SCN–0.16 mole % DC alloy has also been measured.


Entropy Change Boundary Energy Thermal Conductivity Ratio Eutectic Liquid Pivalic Acid 



This project was supported by the Erciyes University Scientific Research Project Unit under the contract no FBT-05-06. Authors would like to thank to Erciyes University Scientific Research Project Unit for their financial supports.


  1. 1.
    Jones DRH, Chadwick GA (1970) Phil Mag 22:291CrossRefGoogle Scholar
  2. 2.
    Jones DRH, Chadwick GA (1971) J Cryst Growth 11:260CrossRefGoogle Scholar
  3. 3.
    Jones DRH (1978) Phil Mag 27:569CrossRefGoogle Scholar
  4. 4.
    Schaefer RJ, Glicksman ME, Ayers JD (1975) Phil Mag 32:725CrossRefGoogle Scholar
  5. 5.
    Hardy SC (1977) Phil Mag 35:471CrossRefGoogle Scholar
  6. 6.
    Nash GE, Glicksman ME (1971) Phil Mag 24:577CrossRefGoogle Scholar
  7. 7.
    Bolling GF, Tiller WA (1960) J Appl Phys 31/8:1345CrossRefGoogle Scholar
  8. 8.
    Singh NB, Glicksman ME (1989) J Cryst Growth 98:573CrossRefGoogle Scholar
  9. 9.
    Stalder I, Bilgram JH (2003) J Chem Phys 118:7981CrossRefGoogle Scholar
  10. 10.
    Gündüz M, Hunt JD (1985) Acta Metall 33/9:651Google Scholar
  11. 11.
    Gündüz M, Hunt JD (1989) Acta Metall 37/7:839Google Scholar
  12. 12.
    Maraşlı N, Hunt JD (1996) Acta Mater 44/3:1085CrossRefGoogle Scholar
  13. 13.
    Keşlioğlu K, Maraşlı N (2004) Mater Sci Eng A 369:294CrossRefGoogle Scholar
  14. 14.
    Keşlioğlu K, Maraşlı N (2004) Metall Mater Trans A 35A:3665CrossRefGoogle Scholar
  15. 15.
    Keşlioğlu K, Gündüz M, Kaya H, Çadırlı E (2004) Mater Lett 58:3067CrossRefGoogle Scholar
  16. 16.
    Erol M, Maraşlı N, Keşlioğlu K, Gündüz M (2004) Scripta Mater 51:131CrossRefGoogle Scholar
  17. 17.
    Keşlioğlu K, Erol M, Maraşlı N, Gündüz M (2004) J Alloy Compd 385:207CrossRefGoogle Scholar
  18. 18.
    Bayender B, Maraşlı N, Çadırlı E, Şişman H, Gündüz M (1998) J Cryst Growth 194/1:119CrossRefGoogle Scholar
  19. 19.
    Bayender B, Maraşlı N, Çadırlı E, Gündüz M (1999) Mater Sci Eng A 270:343CrossRefGoogle Scholar
  20. 20.
    Maraşlı N, Keşlioğlu K, Arslan B (2003) J Cryst Growth 247:613CrossRefGoogle Scholar
  21. 21.
    Witusiewicz VT, Sturz L, Hecht U, Rex S (2004) Acta Mater 52:4561CrossRefGoogle Scholar
  22. 22.
    Derollez P, Lefebvre J, Descamps M, Press W, Fontaine H (1990) Condens Matter 2:6893CrossRefGoogle Scholar
  23. 23.
    Woodruff DP (1973) The solid–liquid interface. Cambridge University Press, Cambridge, p 4Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • K. Keşlioğlu
    • 1
  • U. Böyük
    • 2
  • M. Erol
    • 2
  • N. Maraşlı
    • 1
    Email author
  1. 1.Department of Physics, Faculty of Arts and SciencesErciyes UniversityKayseriTurkey
  2. 2.Institute of Science and TechnologyErciyes UniversityKayseriTurkey

Personalised recommendations