Advertisement

Journal of Materials Science

, Volume 42, Issue 1, pp 266–297 | Cite as

Electrospray droplet sources for thin film deposition

  • A. JaworekEmail author
Article

Abstract

Electrospraying utilises electrical forces for liquid atomisation. Droplets obtained by this method are highly charged to a fraction of the Rayleigh limit. The advantage of electrospraying is that the droplets can be extremely small, down to the order of 10’s nanometres, and the charge and size of the droplets can be controlled to some extent be electrical means. Motion of the charged droplets can be controlled by electric field. The deposition efficiency of the charged spray on an object is usually higher than that for uncharged droplets. Electrospray is, or potentially can be applied to many processes in industry and in scientific instruments manufacturing. The paper reviews electrospray methods and devices, including liquid metal ion sources, used for thin film deposition. This technique is applied in modern material technologies, microelectronics, micromachining, and nanotechnology.

Keywords

SnO2 Substrate Temperature Emission Current Thin Film Deposition Fine Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rayleigh FRS (1882) Phil Mag 14(5):184Google Scholar
  2. 2.
    Lapple CE (1970) In: Drew TB, Cokelet GR, Hoopes JW Jr, Vermeulen T (eds), Advances in chemical engineering, vol 8. Academic Press, New York, LondonGoogle Scholar
  3. 3.
    Jaworek A, Adamiak K, Krupa A, Castle P (2001) J Electrostatics 51–52:603CrossRefGoogle Scholar
  4. 4.
    Bailey AG, Bracher JG, von Rohden HJ (1972) J Spacecraft 9(7):518CrossRefGoogle Scholar
  5. 5.
    Snarski SR, Dunn PF (1991) Exp Fluids 11(4):268CrossRefGoogle Scholar
  6. 6.
    Rulison AJ, Flagan RC (1993) Rev Sci Instrum 64(3):683CrossRefGoogle Scholar
  7. 7.
    Franks A, Luty M, Robbie CJ, Stedman M (1998) Nanotechnoly 9(2):61CrossRefGoogle Scholar
  8. 8.
    Almekinders JC, Jones C (1999) J Aerosol Sci 30(7):969CrossRefGoogle Scholar
  9. 9.
    Regele JD, Papac MJ, Rickard MJA, Dunn-Rankin D (2002) J Aerosol Sci 32(11):1471CrossRefGoogle Scholar
  10. 10.
    Krupa A, Jaworek A, Czech T, Lackowski M, Luckner J (2003) Inst Phys Conf Ser 178:283Google Scholar
  11. 11.
    Jaworek A, Balachandran W, Lackowski M, Kulon J, Krupa A (2006) J Electrostatics 64(3–4): 194CrossRefGoogle Scholar
  12. 12.
    Sato M (1991) IEEE Trans Ind Appl 27(2):316CrossRefGoogle Scholar
  13. 13.
    Balachandran W, Krupa A, Machowski W, Jaworek A (2001a) J Electrostatics 51–52:193CrossRefGoogle Scholar
  14. 14.
    Balachandran W, Jaworek A, Krupa A, Kulon J, Lackowski M (2003) J Electrostatics 58(3–4):209CrossRefGoogle Scholar
  15. 15.
    Law SE, Cooper SC (1988) Trans ASAE 31(4):984Google Scholar
  16. 16.
    Law SE, Cooper SC, Law WB (1999) Inst Phys Conf Ser No 163:243Google Scholar
  17. 17.
    Law SE (2001) J Electrostatics 51–52:25Google Scholar
  18. 18.
    Hayati I, Bailey AI, Tadros ThF (1987) J Coll Interface Sci 117(1):205CrossRefGoogle Scholar
  19. 19.
    Cloupeau M, Prunet-Foch B (1990) J Electrostatics 25:165CrossRefGoogle Scholar
  20. 20.
    Cloupeau M, Prunet-Foch B (1994) J Aerosol Sci 25(6):1121CrossRefGoogle Scholar
  21. 21.
    Grace JM, Marijnissen JCM (1994) J Aerosol Sci 25(6):1005CrossRefGoogle Scholar
  22. 22.
    Jaworek A, Krupa A (1996a) J Aerosol Sci 27(1):75CrossRefGoogle Scholar
  23. 23.
    Jaworek A, Krupa A (1996b) J Aerosol Sci 27(7):979CrossRefGoogle Scholar
  24. 24.
    Jaworek A, Krupa A (1999a) Exp Fluids 27(1):43CrossRefGoogle Scholar
  25. 25.
    Jaworek A, Krupa A (1999b) J Aerosol Sci 30(7):873CrossRefGoogle Scholar
  26. 26.
    Altenburg H, Plewa J, Plesch G, Shpotyuk O (2002) Pure Appl Chem 74(11):2083Google Scholar
  27. 27.
    Choy KL (2003) Progress Mater Sci 48:57CrossRefGoogle Scholar
  28. 28.
    Zomeren van AA, Kelder EM, Marijnissen JCM, Schoonman J (1994) J Aerosol Sci 25(6):1229CrossRefGoogle Scholar
  29. 29.
    Chen CH, Buysman AAJ, Kelder EM, Schoonman J (1995) Solid State Ionics 80:1CrossRefGoogle Scholar
  30. 30.
    Chen CH, Kelder EM, Jak MJG, Schoonman J (1996b) Solid State Ionics 86:1301CrossRefGoogle Scholar
  31. 31.
    Chen CH, Emond MHJ, Kelder EM, Meester B, Schoonman J (1999a) J Aerosol Sci 30(7):959CrossRefGoogle Scholar
  32. 32.
    Lapham DP, Colbeck I, Schoonman J, Kamlag Y (2001) Thin Solid Films 391:17CrossRefGoogle Scholar
  33. 33.
    Taniguchi I, van Landschoot RC, Schoonman J (2003a) Solid State Ionics 156:1CrossRefGoogle Scholar
  34. 34.
    Taniguchi I, van Landschoot RC, Schoonman J (2003b) Solid State Ionics 160:271CrossRefGoogle Scholar
  35. 35.
    Perednis D, Wilhelm O, Pratsinis SE, Gauckler LJ (2005) Thin Solid Films 474:84CrossRefGoogle Scholar
  36. 36.
    Park H, Kim K, Kim S (2004) J Aerosol Sci 35(11):1295CrossRefGoogle Scholar
  37. 37.
    Kim SG, Choi KH, Eun JH, Kim HJ, Hwang ChS (2000a) This Solid Films 377:694CrossRefGoogle Scholar
  38. 38.
    Kim SG, Kim JY, Kim HJ (2000b) This Solid Films 378:110CrossRefGoogle Scholar
  39. 39.
    Sorensen G (1999) Surf Coat Techn 112(1–3):221CrossRefGoogle Scholar
  40. 40.
    Li JL (2005) J Aerosol Sci 36:373CrossRefGoogle Scholar
  41. 41.
    Kessick R, Fenn J, Tepper G (2004) Polymer 45:2981CrossRefGoogle Scholar
  42. 42.
    Choy KL, Su B (1999) J Mater Sci Lett 18:943CrossRefGoogle Scholar
  43. 43.
    Carswell DJ, Milsted J (1957) J Nucl Energy 4:51Google Scholar
  44. 44.
    Gorodinsky WA, Romanov JuF, Sorokina AW, Yakunin MI (1959) Prib Techn Exper 5:128Google Scholar
  45. 45.
    Bruninx E, Rudstam G (1961) Nucl Instrum Methods 13:131CrossRefGoogle Scholar
  46. 46.
    Lauer KF, Verdingh V (1963) Nucl Instrum Methods 21:161CrossRefGoogle Scholar
  47. 47.
    Michelson D (1968) J Fluid Mech 33(3):573CrossRefGoogle Scholar
  48. 48.
    Shorey JD, Michelson D (1970) Nucl Instrum Meth 82:295CrossRefGoogle Scholar
  49. 49.
    Teer D, Dole M (1975) J Polymer Sci 13(5):985Google Scholar
  50. 50.
    Mahoney JF, Perel J (1981) IEEE Ind. Appl. Soc. Conf. Rec., 1142–1145Google Scholar
  51. 51.
    Pang TM, Prewett PD, Gowland L (1982) This Solid Films 88:219CrossRefGoogle Scholar
  52. 52.
    Hall A, Hemming M (1992) Circuit World 18(2):32Google Scholar
  53. 53.
    Thundat T, Warmack RJ, Allison DP, Ferrell TL (1992) Ultramicroscopy 42–44(Pt. B):1083CrossRefGoogle Scholar
  54. 54.
    Ryu ChK, Kim K (1995) Appl Phys Lett 67(22):3337CrossRefGoogle Scholar
  55. 55.
    Chen CH, Kelder EM, Schoonman J (1996c) J Mater Sci 31(20):5437CrossRefGoogle Scholar
  56. 56.
    Chen CH, Kelder EM, Schoonman J (1997a) J Mater Sci Lett 16:1967CrossRefGoogle Scholar
  57. 57.
    Chen CH, Nord-Varhaug K, Schoonman J (1996e) J Mater Synth Process 4(3):189Google Scholar
  58. 58.
    Denisyuk IYu (1996) J Opt Technol 63(4):296Google Scholar
  59. 59.
    Hoyer B, Sorensen G, Jensen N, Nielsen DB, Larsen B (1996) Anal Chem 68(21):3840CrossRefGoogle Scholar
  60. 60.
    Stelzer NHJ, Schoonman J (1996) J Mater Synth Proc 4(6):429Google Scholar
  61. 61.
    Chen CH, Kelder EM, Schoonman J (1997b) J Power Sources 68:377CrossRefGoogle Scholar
  62. 62.
    Sobota J, Sorensen G (1997) Tribology Lett 3:161CrossRefGoogle Scholar
  63. 63.
    Teng WD, Huneiti ZA, Machowski W, Evans JRG, Edirisinghe MJ, Balachandran W (1997) J Mater Sci Lett 16:1017CrossRefGoogle Scholar
  64. 64.
    Chen CH, Yuan FL, Schoonman J (1998b) Eur J Solid State Inorg Chem 35:198CrossRefGoogle Scholar
  65. 65.
    Choy K, Bai W, Charojrochkul S, Steele BCH (1998) J Power Sources 71:361CrossRefGoogle Scholar
  66. 66.
    Cich M, Kim K, Choi H, Hwang ST (1998) Appl Phys Lett 73(15):2116CrossRefGoogle Scholar
  67. 67.
    Gourari H, Lumbreras M, Van Landschoot R, Schoonman J (1998) Sensors Actuators B 47:189CrossRefGoogle Scholar
  68. 68.
    Gourari H, Lumbreras M, Van Landschoot R, Schoonman J (1999) Sensors Actuators B 58:365CrossRefGoogle Scholar
  69. 69.
    Heine JR, Rodriguez-Viejo J, Bawendi MG, Jensen KF (1998) J Crystal Growth 195(1–4):564CrossRefGoogle Scholar
  70. 70.
    Nishizawa M, Uchiyama T, Dokko K, Yamada K, Matsue T, Uchida I (1998) Bull Chem Soc Japan 71(8):2011CrossRefGoogle Scholar
  71. 71.
    Chen CH, Kelder EM, Schoonman J (1999b) Thin Solid Films 342:35CrossRefGoogle Scholar
  72. 72.
    Miao P, Huneiti ZA, Machowski W, Balachandran W, Xiao P, Evans JRG (1999) Inst Phys Conf Ser No 163:119Google Scholar
  73. 73.
    Miao P, Balachandran W, Xiao P (2002) IEEE Trans Ind Appl 38(1):50CrossRefGoogle Scholar
  74. 74.
    Miao P, Balachandran W, Wang JL (2001a) J Electrostatics 51–52:43CrossRefGoogle Scholar
  75. 75.
    Miao P, Balachandran W, Xiao P (2001b) J Mater Sci 36:2925CrossRefGoogle Scholar
  76. 76.
    Balachandran W, Miao P, Xiao P (2001b) J Electrostatics 50(4):249CrossRefGoogle Scholar
  77. 77.
    Moerman R, Frank J, Marijnissen JCM, van Dedem GH (1999) J Aerosol Sci 30(Suppl. 1):551CrossRefGoogle Scholar
  78. 78.
    Su B, Choy KL (1999a) J Mater Sci Lett 18:1705CrossRefGoogle Scholar
  79. 79.
    Turetsky AYe (1999) J Aerosol Sci 30(Suppl. 1):689CrossRefGoogle Scholar
  80. 80.
    Yamada K, Sato N, Fujino T, Lee ChG, Uchida I, Selman JR (1999) J Solid State Electrochem 3:148CrossRefGoogle Scholar
  81. 81.
    Reifarth R, Schwarz K, Käppeler F (2000) Astrophys J 528(1):573CrossRefGoogle Scholar
  82. 82.
    Su B, Choy KL (2000a) Thin Solid Films 359:160CrossRefGoogle Scholar
  83. 83.
    Su B, Choy KL (2000b) J Mater Sci Lett 19:1859CrossRefGoogle Scholar
  84. 84.
    Choy KL, Su B (2001) Thin Solid Films 388:9CrossRefGoogle Scholar
  85. 85.
    Su B, Wei M, Choy KL (2001) Mater Lett 43:83CrossRefGoogle Scholar
  86. 86.
    Zaouk D, Zaatar Y, Khoury A, Llinares C, Charles JP, Bechara J (2000a) Microelectr Eng 51–52:627CrossRefGoogle Scholar
  87. 87.
    Zaouk D, Zaatar Y, Khoury A, Llinares C, Charles JP, Bechara J (2000b) J Appl Phys 87:7539CrossRefGoogle Scholar
  88. 88.
    Chandrasekhar R, Choy KL (2001a) Thin Solid Films 398–399:59CrossRefGoogle Scholar
  89. 89.
    Raj ES, Choy KL (2003) Mater Chem Phys 82:489CrossRefGoogle Scholar
  90. 90.
    Chandrasekhar R, Choy KL (2001b) J Crystal Growth 231:215CrossRefGoogle Scholar
  91. 91.
    Choy KL (2001) Mater Sci Eng C 16:139CrossRefGoogle Scholar
  92. 92.
    Wei M, Choy KL (2002) Chem Vapor Depos 8(1):15CrossRefGoogle Scholar
  93. 93.
    Diagne EHA, Lumbreras M (2001) Sensors Actuators B 78:98CrossRefGoogle Scholar
  94. 94.
    Moerman R, Frank J, Marijnissen JCM, Schalkhammer TGM, van Dedem GWK (2001) Anal Chem 73(10):2183CrossRefGoogle Scholar
  95. 95.
    Moerman R, Knoll J, Apetrei C, van den Doel LR, van Dedem GWK (2005) Anal Chem 77:225CrossRefGoogle Scholar
  96. 96.
    Mohamedi M, Lee SJ, Takahashi D, Nishizawa M, Itoh T, Uchida I (2001a) Electrochimica Acta 46:1161CrossRefGoogle Scholar
  97. 97.
    Mohamedi M, Takahashi D, Uchiyama T, Itoh T, Nishizawa M, Uchida I (2001b) J Power Sources 93:93CrossRefGoogle Scholar
  98. 98.
    Mohamedi M, Takahashi D, Itoh T, Uchida I (2002a) Electrochimica Acta 47:3483CrossRefGoogle Scholar
  99. 99.
    Mohamedi M, Takahashi D, Itoh T, Umeda M, Uchida I (2002b) J Electrochem Soc 149(1):A19CrossRefGoogle Scholar
  100. 100.
    Nguyen T, Djurado E (2001) Solid State Ionics 138:191CrossRefGoogle Scholar
  101. 101.
    Rhee SH, Yang Y, Choi HS, Myoung JM, Kim K (2001) Thin Solid Films 396(1–2):23CrossRefGoogle Scholar
  102. 102.
    Yoon WS, Ban SH, Lee KK, Kim KB, Kim MG, Lee JM (2001) J Power Sources 97–98:282CrossRefGoogle Scholar
  103. 103.
    Cao F, Prakash J (2002) Electrochimica Acta 47:1607CrossRefGoogle Scholar
  104. 104.
    Jayasinghe SN, Edirisinghe MJ, DeWilde T (2002) Mat Res Innovat 6(3):92CrossRefGoogle Scholar
  105. 105.
    Jayasinghe SN, Edirisinghe MJ, Kippax PG (2004a) Appl Phys A 78:343CrossRefGoogle Scholar
  106. 106.
    Jayasinghe SN, Edirisinghe MJ (2002) J Porous Mater 9:265CrossRefGoogle Scholar
  107. 107.
    Jayasinghe SN, Edirisinghe MJ (2003) Mat Res Innovat 7:62Google Scholar
  108. 108.
    Jayasinghe SN, Edirisinghe MJ (2004) J Europ Ceramic Soc 24:2203CrossRefGoogle Scholar
  109. 109.
    Kobayashi Y, Miyashiro H, Takeuchi T, Shigemura H, Balakrishnan N, Tabuchi M, Kageyama H, Iwahori T (2002) Solid State Ionics 152–153:137CrossRefGoogle Scholar
  110. 110.
    Dokko K, Anzue N, Makino Y, Mohamedi M, Itoh T, Umeda M, Uchida I (2003) Electrochem 71(12):1061Google Scholar
  111. 111.
    Dokko K, Anzue N, Mohamedi M, Itoh T, Uchida I (2004) Electrochem Comm 6:384CrossRefGoogle Scholar
  112. 112.
    Huang H, Yao X, Wu X, Wang M, Zhang L (2003) Microelectr Eng 66:688CrossRefGoogle Scholar
  113. 113.
    Kim YT, Gopukumar S, Kim KB, Cho BW (2003) J Power Sources 117:110CrossRefGoogle Scholar
  114. 114.
    Lu J, Chu J, Huang W, Ping Z (2003) Sensors Actuators A 108:2CrossRefGoogle Scholar
  115. 115.
    Shu D, Chung KY, Cho WI, Kim KB (2003a) J Power Sources 114:253CrossRefGoogle Scholar
  116. 116.
    Shu D, Kumar G, Kim KB, Ryu KS, Chan SH (2003b) Solid State Ionics 160:227CrossRefGoogle Scholar
  117. 117.
    Chung KY, Shu D, Kim KB (2004) Electrochim Acta 49:887CrossRefGoogle Scholar
  118. 118.
    Hou X, Choy K-L (2004) Surface Coat Technol 180–181:15CrossRefGoogle Scholar
  119. 119.
    Jayasinghe SN, Edirisinghe MJ, Wang DZ (2004b) Nanotechnology 15:1519CrossRefGoogle Scholar
  120. 120.
    Kim IH, Kim KB (2004) J Electrochem Soc 151(1):E7CrossRefGoogle Scholar
  121. 121.
    Matsushima Y, Nemoto Y, Yamazaki T, Maeda K, Suzuki T (2004) Sensors Actuators B 96:133CrossRefGoogle Scholar
  122. 122.
    Morota K, Matsumoto H, Mizukoshi T, Konosu Y, Minagawa M, Tanioka A, Yamagata Y, Inoue K (2004) J Colloid Interface Sci 279:484CrossRefGoogle Scholar
  123. 123.
    Saf R, Goriup M, Steindl T, Hamedinger TE, Sandholzer D, Hayn G (2004) NatMat 3(5):323CrossRefGoogle Scholar
  124. 124.
    Sanders EH, McGrady KA, Wnek GE, Edmondson CA, Mueller JM, Fontanella JJ, Suarez S, Greenbaum SG (2004) J Power Sources 129:55CrossRefGoogle Scholar
  125. 125.
    Siebers MC, Walboomers XF, Leeuwenburgh SCG, Wolke JGC, Jansen JA (2004) Biomater 25:2019CrossRefGoogle Scholar
  126. 126.
    Leeuwenburgh SCG, Wolke JGC, Schoonman J, Jansen JA (2004) Biomater 25:641CrossRefGoogle Scholar
  127. 127.
    Uematsu I, Matsumoto H, Morota K, Minagawa M, Tanioka A, Yamagata Y, Inoue K (2004) J Colloid Interface Sci 269:336CrossRefGoogle Scholar
  128. 128.
    Jayasinghe SN, Edirisinghe MJ (2005a) Appl Phys A 80:399CrossRefGoogle Scholar
  129. 129.
    Dorey RA, Whatmore RW (2004) J Electroceramics 12:19CrossRefGoogle Scholar
  130. 130.
    Michelson D, Richardson OW (1963) Nucl Instrum Methods 21:355CrossRefGoogle Scholar
  131. 131.
    Su B, Choy KL (2000c) Thin Solid Films 361–362:102CrossRefGoogle Scholar
  132. 132.
    Jiang SP, Chan SH (2004) J Mater Sci 39(14):4405CrossRefGoogle Scholar
  133. 133.
    Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ (2000) Solid State Ionics 131:79CrossRefGoogle Scholar
  134. 134.
    Kelder EM, Nijs OCJ, Schoonman J (1994) Solid State Ionics 68(1–2):5CrossRefGoogle Scholar
  135. 135.
    Chen CH, Kelder EM, Schoonman J (1998a) J Europ Ceramic Soc 18:1439CrossRefGoogle Scholar
  136. 136.
    Su B, Choy KL (1999b) J Mater Chem 9(7):1629CrossRefGoogle Scholar
  137. 137.
    Grigoriev DA, Edirisinghe M, Bao X (2002) J Mater Res 17(2):487Google Scholar
  138. 138.
    Su B, Choy KL (2000d) J Mater Chem 10(4):949CrossRefGoogle Scholar
  139. 139.
    Choy KL (2000) Surf Eng, 16(6):469Google Scholar
  140. 140.
    Leeuwenburgh S, Wolke J, Schoonman J, Jansen J (2003) J Biomed Mater Res A 66A(2):330CrossRefGoogle Scholar
  141. 141.
    Chen CH, Kelder EM, vanderPut PJJM, Schoonman J (1996d) J Mater Chem 6(5):765CrossRefGoogle Scholar
  142. 142.
    Schoonman J (2000) Solid State Ionics 135:5CrossRefGoogle Scholar
  143. 143.
    Grigoriev DA, Edirisinghe M (2002) J Appl Phys 91(1):437CrossRefGoogle Scholar
  144. 144.
    Madou MJ (2002) Fundamentals of microfabrication. CRC PressGoogle Scholar
  145. 145.
    Colby BN, Evans CA Jr (1973) Anal Chem 45(11):884CrossRefGoogle Scholar
  146. 146.
    Krohn VE, Ringo GR (1975) Appl Phys Lett 27(9):479CrossRefGoogle Scholar
  147. 147.
    Arnold PG, Balachandran W (1995) Electrostatics Inst. Phys. Conf. Ser. No. 143:283–288Google Scholar
  148. 148.
    Melngailis J (1987) J Vac Sci Technol B5(2):469Google Scholar
  149. 149.
    Jeynes C (1989) Vacuum 39(11–12):1047CrossRefGoogle Scholar
  150. 150.
    Mair GLR (1992) Int J Mass Spectr Ion Proc 114(1–2):1CrossRefGoogle Scholar
  151. 151.
    Orloff J (1993) Rev Sci Instrum 64(5):1105CrossRefGoogle Scholar
  152. 152.
    Stevie FA, Shane TC, Kahora PM, Hull R, Bahnck D, Kannan VC, David E (1995) Surf Interface Anal 23(2):61CrossRefGoogle Scholar
  153. 153.
    Reyntjens S, Puers R (2001) J Micromech Microeng 11(4):287CrossRefGoogle Scholar
  154. 154.
    Mackenzie RAD, Smith GDW (1990) Nanotechnology 1(2):163CrossRefGoogle Scholar
  155. 155.
    Mitterauer J (1995) Appl Surf Sci 87–88:79CrossRefGoogle Scholar
  156. 156.
    Gomer R (1979) Appl Phys 19(4):365CrossRefGoogle Scholar
  157. 157.
    Forbes RG (1997) Vacuum 48(1):85CrossRefGoogle Scholar
  158. 158.
    Forbes RG (2000) J Aerosol Sci 31(1):97CrossRefGoogle Scholar
  159. 159.
    Van Es JJ, Gierak J, Forbes RG, Suvorov VG, Van den Berghe T, Dubuisson Ph, Monnet I, Septier A (2004) Microelectr Eng 73–74:132Google Scholar
  160. 160.
    Bischoff L, Akhmadaliev C, Mair AWR, Mair GLR, Ganetsos T, Aidinis CJ (2004a) Appl Phys A 79:89CrossRefGoogle Scholar
  161. 161.
    Wagner A, Hall TM (1979) J Vac Sci Technol 16(6):1871CrossRefGoogle Scholar
  162. 162.
    Bell AE, Swanson LW (1986) Appl Phys A 41:335CrossRefGoogle Scholar
  163. 163.
    Seliger RL, Ward JW, Wang V, Kubena RL (1979) Appl Phys Lett 34(5):310CrossRefGoogle Scholar
  164. 164.
    Cheng J, Steckl AJ (2001) J Vacuum Sci Technol B19(6):2551Google Scholar
  165. 165.
    Prewett PD, Jefferies DK (1980) J Phys D: Appl Phys 13(9):1747CrossRefGoogle Scholar
  166. 166.
    Benassayag G, Sudraud P, Jouffrey B (1985) Ultramicroscopy 16(1):1CrossRefGoogle Scholar
  167. 167.
    Benassayag G, Orloff J, Swanson LW (1986) J Physique C7 47(Suppl. 11):389Google Scholar
  168. 168.
    Davies ST, Khamsehpour B (1996) Vacuum 47(5):455CrossRefGoogle Scholar
  169. 169.
    Gierak J, Septier A, Vieu C (1999) Methods Phys Res A427:91CrossRefGoogle Scholar
  170. 170.
    Vladimirov VV, Badan VE, Goshkov VN, Soloshenko IA (1993) Appl Surf Sci 65/66(1–4):1CrossRefGoogle Scholar
  171. 171.
    Purcell ST, Binh VT, Thevenard P (2001) Nanotechnology 12(2):168CrossRefGoogle Scholar
  172. 172.
    Clampitt R, Jefferies DK (1978) Nucl Instrum Methods 149:739CrossRefGoogle Scholar
  173. 173.
    Yamaguti T (1977) Japan J Appl Phys 16(9):1547CrossRefGoogle Scholar
  174. 174.
    Noda T, Okutani T, Yagi K, Tamura H, Okano H, Watanabe H (1982) Rev Sci Instrum 53(9):1482CrossRefGoogle Scholar
  175. 175.
    Ishikawa J, Tsuji H, Aoyama Y, Takagi T (1990) Rev Sci Instrum 61(1, pt.2):592CrossRefGoogle Scholar
  176. 176.
    Ishikawa J, Takagi T (1984) J Appl Phys 56(11):3050CrossRefGoogle Scholar
  177. 177.
    Bahasadri A, Brown WL, Saedi R, Pourrezaei K (1988) J Vac Sci Technol B6(6):2085Google Scholar
  178. 178.
    Mahoney JF, Yahiku AY, Daley HL, Moore RD, Perel J (1969) J Appl Phys 40(13):5101CrossRefGoogle Scholar
  179. 179.
    Evans CA Jr, Hendricks CD (1972) Rev Sci Instrum 43(10):1527CrossRefGoogle Scholar
  180. 180.
    Mair GLR, von Engel A (1981) J Phys D: Appl Phys 14(9):1721CrossRefGoogle Scholar
  181. 181.
    Mahony C, Prewett PD (1984) Vacuum 34(1–2):301CrossRefGoogle Scholar
  182. 182.
    D’Cruz C, Pourrezaei K, Wagner A (1985) J Appl Phys 58(7):2724CrossRefGoogle Scholar
  183. 183.
    Nagamachi S, Yamakage Y, Ueda M, Maruno H, Shinada K, Fujiyama Y, Asari M, Ishikawa J (1994) Appl Phys Lett 65(25):3278CrossRefGoogle Scholar
  184. 184.
    Nagamachi S, Yamakage Y, Ueda M, Maruno H, Ishikawa J (1996) Rev Sci Instrum 67(6):2351CrossRefGoogle Scholar
  185. 185.
    Chen CA, Acquaviva P, Chun JH, Ando T (1996a) Scripta Materialia 34(5):689CrossRefGoogle Scholar
  186. 186.
    Driesel W, Dietzsch Ch, Möser M (1996) J Phys D: Appl Phys 29:2492CrossRefGoogle Scholar
  187. 187.
    Vieu C, Gierak J, David C, Lagadec Y, Bourlange A, Larigaldie D, Wang Z, Flicstein J, Launois H (1997) Microelectr Eng 35:349CrossRefGoogle Scholar
  188. 188.
    Saito Y, Murata K, Hamaguchi K, Fujita H, Kotake S, Suzuki Y, Senoo M, Hu C-W, Kasuya A, Nishina Y (1998) J Cluster Sci 9(2):123CrossRefGoogle Scholar
  189. 189.
    Sazio PJA, Vijendran S, Yu W, Beere HE, Jones GAC, Linfield EH, Ritchie DA (1999) J Crystal Growth 201/202:12CrossRefGoogle Scholar
  190. 190.
    Vijendran S, Sazio PJA, Beere HE, Jones GAC, Ritchie DA, Norman CE (1999) J Vacuum Sci Technol B 17(6):3226CrossRefGoogle Scholar
  191. 191.
    Akhmadaliev C, Mair GLR, Aidinis CJ, Bischoff L (2002) J Phys D: Appl Phys 35:L91CrossRefGoogle Scholar
  192. 192.
    Akhmadaliev Ch, Bischoff L, Mair GLR, Aidinis CJ, Ganetsos Th, Anagnostakis E (2003) J Phys D: Appl Phys 36:L18CrossRefGoogle Scholar
  193. 193.
    Akhmadaliev Ch, Bischoff L, Mair GLR, Aidinis CJ, Ganetsos Th (2004) Microelectr Eng 73–74:120CrossRefGoogle Scholar
  194. 194.
    Mair GLR, Akhmadaliev Ch, Bischoff L, Ganetsos Th, Aidinis CJ (2003) Nuclear Instrum Meth Phys Res B 211:556CrossRefGoogle Scholar
  195. 195.
    Mair GLR, Akhmadaliev Ch, Bischoff L, Ganetsos Th, Aidinis CJ, Anagnostakis EA (2004) Nucl Instrum Meth Phys Res B 217:347CrossRefGoogle Scholar
  196. 196.
    Bischoff L, Mair GLR, Aidinis CJ, Londos CA, Akhmadaliev C, Ganetsos Th (2004c) Ultramicroscopy 100:1CrossRefGoogle Scholar
  197. 197.
    Vijendran S, Lin SD, Jones GAC (2004) Microelectr Eng 73–74:111CrossRefGoogle Scholar
  198. 198.
    Hu CW, Kasuya A, Wowro A, Horiguchi N, Czajka R, Nishina Y, Saito Y, Fujita H (1996) Mater Sci Eng A 217–218:103Google Scholar
  199. 199.
    Vijendran S, Jones GAC, Beere HE, Shields AJ (2000) Microelectr Eng 53:631CrossRefGoogle Scholar
  200. 200.
    Krohn VE Jr (1961) In: Langmuir DB, Stuhlinger E, Sellen JM Jr (eds) Electrostatic propulsion. Academic Press, New York, London, pp 73–80Google Scholar
  201. 201.
    Mair GLR (1984) J Phys D: Appl Phys 17(11):2323CrossRefGoogle Scholar
  202. 202.
    Beckman JC, Chang THP, Wagner A, Pease RFW (1996) J Vacuum Sci Technol B14(6):3911Google Scholar
  203. 203.
    Beckman JC, Chang THP, Wagner A, Pease RFW (1997) J Vacuum Sci Technol B15(6):2332Google Scholar
  204. 204.
    Aidinis CJ, Mair GLR, Bischoff L, Papadopoulos I (2001) J Phys D: Appl Phys 34:L14CrossRefGoogle Scholar
  205. 205.
    Suvorov VG, Forbes RG (2004) Microelectr Eng 73–74:126CrossRefGoogle Scholar
  206. 206.
    Mair GLR (1996) J Phys D: Appl Phys 29:2186CrossRefGoogle Scholar
  207. 207.
    Gabovich MD (1983) Usp Fiz Nauk 140(1):137 (in Russian)Google Scholar
  208. 208.
    Gabovich MD, Poritsky WJa (1983) Zh Eksper Teor Fiz 85(1):146 (in Russian)Google Scholar
  209. 209.
    Praprotnik B, Driesel W, Dietzsch Ch, Niedrig H (1994) Surface Sci 314:353CrossRefGoogle Scholar
  210. 210.
    Driesel W, Dietzsch Ch (1996) Appl Surface Sci 96:179CrossRefGoogle Scholar
  211. 211.
    Bischoff L, Mair GLR, Mair AWR, Ganetsos T, Akhmadaliev C (2004b) Methods Phys Res B 222:622CrossRefGoogle Scholar
  212. 212.
    Mair GLR (1990) J Phys D: Appl Phys 23:1239CrossRefGoogle Scholar
  213. 213.
    Hesse E, Mair GLR, Bischoff L, Teichert J (1996) J Phys D Appl Phys 29:2193CrossRefGoogle Scholar
  214. 214.
    Mair GLR, von Engel A (1979) J Appl Phys 50(9):5592CrossRefGoogle Scholar
  215. 215.
    Thompson SP (1984) Vacuum 34(1–2):223CrossRefGoogle Scholar
  216. 216.
    Barr DL (1987) J Vac Sci Technol B5(1):184Google Scholar
  217. 217.
    Kingham DR (1983) Appl Phys A 31(3):161CrossRefGoogle Scholar
  218. 218.
    Mair GLR, Ganetsos Th, Bischoff L, Teichert J (2000) J Phys D: Appl Phys 33:L86CrossRefGoogle Scholar
  219. 219.
    Swanson LW, Kingham DR (1986) Appl Phys A 41(3):223CrossRefGoogle Scholar
  220. 220.
    Kingham DR, Swanson LW (1984) Appl Phys A 34(2):123CrossRefGoogle Scholar
  221. 221.
    Kingham DR, Swanson LW (1986) Appl Phys A 41(2):157CrossRefGoogle Scholar
  222. 222.
    Ganetsos Th, Mair GLR, Bischoff L, Teichert J, Kioussis D (2001) Solid State Electron 45:1049CrossRefGoogle Scholar
  223. 223.
    Bischoff L, Teichert J, Ganetsos Th, Mair GLR (2001) J Vacuum Sci Technol B19(1):76Google Scholar
  224. 224.
    Aidinis CJ, Bischoff L, Mair GLR, Londos CA, Ganetsos Th, Akhamdaliev C (2004a) Microelectr Eng 73–74:116CrossRefGoogle Scholar
  225. 225.
    Aidinis CJ, Mair GLR, Bischoff L, Londos CA, Akhamdaliev Ch, Ganetsos Th (2004b) Nuclear Instrum Meth Phys Res B 222:627CrossRefGoogle Scholar
  226. 226.
    Gopalakrishnan MV, Metzgar K, Rosetta D, Krishnamurthy R (2003) J Mater Proc Technol 135:228CrossRefGoogle Scholar
  227. 227.
    Yu F, Cui J, Ranganathan S, Dwarakadasa ES (2001) Mater Sci Eng A304–306:621Google Scholar
  228. 228.
    Lawley A, Leatham AG (1999) Adv Powder Technol, Mater Sci Forum 299(3):407Google Scholar
  229. 229.
    Chaudhury SK, Sivaramakrishnan CS, Panigrahi SC (2004) J Mater Proc Technol 145:385CrossRefGoogle Scholar
  230. 230.
    Mesquita RA, Barbosa CA (2004) Mater Sci Eng A 383:87CrossRefGoogle Scholar
  231. 231.
    Cantor B, Baik KH, Grant PS (1997) Progress Mater Sci 42:373CrossRefGoogle Scholar
  232. 232.
    Smallman RE, Harris IR, Duggan MA (1997) J Mater Proc Technol 63:18CrossRefGoogle Scholar
  233. 233.
    Schneider A, Uhlenwinkel V, Harig H, Bauckhage K (2004) Mater Sci Eng A 383:114CrossRefGoogle Scholar
  234. 234.
    Srivastava VC, Mandal RK, Ojha SN (2001) Mater Sci Eng A304–306:555Google Scholar
  235. 235.
    Jayasinghe SN, Edirisinghe MJ (2005b) Appl Phys A 80:701CrossRefGoogle Scholar
  236. 236.
    Valaskovic GA, Murphy III JP, Lee MS (2004) J Am Soc Mass Spectrom 15:1201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute of Fluid Flow Machinery, Polish Academy of SciencesGdańskPoland

Personalised recommendations