Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5442–5447 | Cite as

Fabrication and properties of in situ synthesized particles reinforced aluminum matrix composites of Al–Zr–O–B system

  • G. R. LiEmail author
  • Y. T. Zhao
  • Q. X. Dai
  • X. N. Cheng
  • H. M. Wang
  • G. Chen
Article

Abstract

A new in situ Al–Zr–O–B system is exploited. The Al–Zr(CO3)2–KBF4 components are used to fabricate the particle reinforced aluminum matrix composites by the direct melt reaction method. The analytical results of XRD and SEM show that the in situ endogenetic particles are ZrAl3, ZrB2 and Al2O3, which are well distributed in the aluminum matrix. The sizes of reinforced particles are 0.5–2.5 μm. The results of mechanical properties of the composites show that the tensile strength and yield strength are improved with the increase of theoretical volume fraction of particles in matrix in the range of 0–12%, which are much superior to those of aluminum matrix. The best elongation of composites is 33% when the theoretical volume fraction is 3%. The fracture mechanism belongs to a ductile one. The wear resistance properties of the composites are much higher than that of aluminum matrix. The best abradability is got when the theoretical volume fraction of particles is 6%. The wear mechanism of the aluminum matrix is adhesive wear while the wear mechanism of (ZrAl3 + ZrB2 + Al2O3)p/Al composites is abrasive wear.

Keywords

Wear Surface Wear Mechanism Aluminum Matrix Adhesive Wear Particle Reinforce Metal Matrix Composite 

Notes

Acknowledgements

The work is financially supported by High Technology and Industry Key Project of Jiangsu Province in China through research grant BG2005026 and BE2002039.

References

  1. 1.
    Cholewa M (2005) J Mater Pro Technol 164–165:1181CrossRefGoogle Scholar
  2. 2.
    Tjong SC, Wang GS, Mai YW (2005) Compos Sci Technol 65:1537CrossRefGoogle Scholar
  3. 3.
    Huang ZJ (2002) Acta Metallur Sin 6:568Google Scholar
  4. 4.
    Yu P, Mei Z, Tjiong SC (2005) Mater Chem Phy 93:109CrossRefGoogle Scholar
  5. 5.
    Roy D, Ghosh S, Basumallick A, Basu B (2006) Mater Sci Eng A415:202CrossRefGoogle Scholar
  6. 6.
    Zhao YT, Li ZH, Cheng XN et al (2003) Trans Nonferrous Met Soc China 13(4):669Google Scholar
  7. 7.
    Sun Zhiqiang, Zhang Di, Li Guobin (2005) Mater Design 26:454Google Scholar
  8. 8.
    Wang MM, Lu WJ, Qin JN et al (2006) Mater Design 27:494CrossRefGoogle Scholar
  9. 9.
    Kok M (2006) Compos Part A 37:457CrossRefGoogle Scholar
  10. 10.
    Li GR, Dai QX, Zhao YT (2005) Chin J Nonferrous Met 15(4):572Google Scholar
  11. 11.
    Li GR, Zhao YT, Dai QX (in press) J Univ Sci TechnolGoogle Scholar
  12. 12.
    Zeng ZM (2003) Manual of mechanical engineering materials [M]. Mechanical industry publishing company, PekingGoogle Scholar
  13. 13.
    Zhao YT, Zhong ZH, Cheng XN et al (2003) Trans Nonferrous Met Soc China 12:770Google Scholar
  14. 14.
    Yu JQ, Yi YZ (1987) Atlas of binary alloy phases. Science publishing company, ShanghaiGoogle Scholar
  15. 15.
    Verhoeven JD (1975) Fundamentals of physical metallurgy. John Wiley &Sons Inc, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. R. Li
    • 1
    Email author
  • Y. T. Zhao
    • 1
  • Q. X. Dai
    • 1
  • X. N. Cheng
    • 1
  • H. M. Wang
    • 1
  • G. Chen
    • 1
  1. 1.School of Materials Science & EngineeringJiangsu UniversityZhenjiangP.R. China

Personalised recommendations