Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5437–5441 | Cite as

Effects of milling conditions on hydrogen storage properties of graphite

  • Zhenguo HuangEmail author
  • Andrzej Calka
  • Huakun Liu
Article

Abstract

Two milling modes (shearing and impact) were applied to investigate the hydrogen storage properties of graphite. It was found that the shearing mode leads to 0.613 wt.% hydrogen absorbed in graphite, while impact mode leads to 2.718 wt.%. X-ray diffraction was used to investigate the structure of the as-milled and subsequent annealed samples. Differential scanning calorimetry was used to study thermally induced transformations in the as-milled samples. Infrared spectrometry was carried out to investigate the interaction between carbon and hydrogen atoms. Results are compared and discussed in conjunction with Laser desorption time-of-flight mass spectrometry results obtained earlier.

Keywords

Milling Hydrogen Storage Carbon Cluster Impact Mode Iron Carbide 

Notes

Acknowledgement

Financial support from the Australian Research Council through an ARC Discovery project (DP 0449660) is gratefully acknowledged.

References

  1. 1.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377CrossRefGoogle Scholar
  2. 2.
    Kajiura H, Tsutsui S, Kadono K, Kakuta M, Ata M, Murakami Y (2003) Appl Phys Lett 82:1105CrossRefGoogle Scholar
  3. 3.
    Chambers A, Park C, Terry R, Baker K, Rodriguez NM (1998) J Phys Chem B 102:4253CrossRefGoogle Scholar
  4. 4.
    Züttel A, Sudan P, Mauron Ph, Kiyobayashi T, Emmenegger Ch, Schlapbach L (2002) Int J Hydrogen Energy 27:203CrossRefGoogle Scholar
  5. 5.
    Ichikawa T, Chen DM, Isobe S, Gomibuchi E, Fujii H (2004) Mater Sci Eng B 108:138CrossRefGoogle Scholar
  6. 6.
    Atsumi H, Tauchi K (2003) J Alloys Comp 356–357:705CrossRefGoogle Scholar
  7. 7.
    Orimo S, Majer G, Fukunaga T, Zuttel A, Schlapbach L, Fujii H (1999) Appl Phys Lett 75:3093CrossRefGoogle Scholar
  8. 8.
    Fukunaga T, Nagano K, Mizutani U, Wakayama H, Fukushima Y (1998) J Non-Cryst Solids 232–234:416CrossRefGoogle Scholar
  9. 9.
    Chen Y, Gerald JF, Chadderton LT, Chaffron L (1999) Appl Phys Lett 4:2782CrossRefGoogle Scholar
  10. 10.
    Kaneshenko SL, Gorodetsky AE, Chernikov VN, Markin AV, Zakharov AP, Doyle BL, Wampler WR (1996) J Nucl Mater 233–237:1207CrossRefGoogle Scholar
  11. 11.
    Haasz AA, Franzen P, Davis JW, Chiu S, Pitcher CS (1995) J Appl Phys 77:66CrossRefGoogle Scholar
  12. 12.
    Davis JW, Haasz AA (1995) J Nucl Mater 220–222:832CrossRefGoogle Scholar
  13. 13.
    Atsumi H, Iseki M, Shikama T (1996) J Nucl Mater 233–237:1128CrossRefGoogle Scholar
  14. 14.
    Gotoh Y (1997) J Nucl Mater 248:46CrossRefGoogle Scholar
  15. 15.
    Huang JY (1999) Acta Mater 7:1801CrossRefGoogle Scholar
  16. 16.
    Huang JY, Yasuda H, Mori H (1999) Chem Phys Lett 303:130CrossRefGoogle Scholar
  17. 17.
    Chen Y, Gerald JF, Chadderton LT, Chaffron L (1999) Appl Phys Lett 74:2782CrossRefGoogle Scholar
  18. 18.
    Ong TS, Yang H (2000) Carbon 38:2077CrossRefGoogle Scholar
  19. 19.
    Chen XH, Yang HS, Wu GT, Wang M, Deng FM, Zhang XB, Peng JC, Li WZ (2000) J Cryst Growth 218:57CrossRefGoogle Scholar
  20. 20.
    Calka A, Radlinski AP (1991) Mater Sci Eng A 134:1350CrossRefGoogle Scholar
  21. 21.
    Calka A, Nikolov JI (1995) NanoStructured Mater 6:409CrossRefGoogle Scholar
  22. 22.
    Smolira A, Szymanska M, Jartych E, Calka A, Michalak L (2005) J Alloys Comp 402:256CrossRefGoogle Scholar
  23. 23.
    Orimo S, Matsushima T, Fujii H, Fukunaga T, Majer G (2001) J Appl Phys 90:3CrossRefGoogle Scholar
  24. 24.
    Huang ZG, Calka A and Liu HK, J Mater Sci, doi:  https://doi.org/10.1007/s10853-006-0382-3 CrossRefGoogle Scholar
  25. 25.
    Calka A, Nikolov JI, Williams JS (1996) Mater Sci Forum 225–227:527CrossRefGoogle Scholar
  26. 26.
    Musumeci P, Calcagno L, Makhtari A, Baeri P, Compagnini G, Pirri CF (2000) Nucl Instr Meth Phys Res B 166–167:404CrossRefGoogle Scholar
  27. 27.
    Welham NJ, Berbenni V, Chapman PG (2003) J Alloys Comp 349:255CrossRefGoogle Scholar
  28. 28.
    Popescu B, Tagliaferro A, Da Zan F, Davis EA (2000) J Non-Cryst Solids 266–269:803CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  2. 2.Faculty of EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations