Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5458–5464 | Cite as

Role of coarse intermetallic particles on the environmentally assisted cracking behavior of peak aged and over aged Al–Zn–Mg–Cu–Zr alloy during slow strain rate testing

  • M. Bobby Kannan
  • V. S. RajaEmail author
Article

Abstract

Coarse intermetallic particles (larger than 1 μm in size) in Al–Zn–Mg–Cu–Zr (7010) alloy were found to significantly influence the crack initiation of the over aged alloy while not affecting the more susceptible peak aged alloy, when subjected to slow strain rate testing (SSRT) in 3.5% NaCl solution. A detailed study was undertaken to examine the causes of such an observation. The study shows that the galvanic action and/or dealloying of the coarse intermetallic particles are responsible for the crack initiation in the over aged alloy. However, this phenomenon is not seen in the peak aged alloy due to its inherent environmentally assisted cracking (EAC) susceptibility and the consequent failure in shorter duration, before the coarse particles can exert an influence.

Keywords

Crack Initiation Crack Growth Rate Cleavage Fracture Aged Alloy Intermetallic Particle 

Notes

Acknowledgements

The authors wish to acknowledge Dr. A. K. Mukhopadhyay, Associate Director, Defence Metallurgical Research Laboratory, Hyderabad, India for providing the materials.

References

  1. 1.
    Doig P, Flewitt PEJ, Edington JW (1977) Corrosion 33:217CrossRefGoogle Scholar
  2. 2.
    Puiggali M, Zielinski A, Olive JM, Renauld E, Desjardins D, Cid M (1998) Corros Sci 40:805CrossRefGoogle Scholar
  3. 3.
    Robinson JS (2000) Mater Sci Forum 331–337:1653CrossRefGoogle Scholar
  4. 4.
    Bobby Kannan M, Raja VS, Raman R, Mukhopadhyay AK (2003) Corrosion 59:881CrossRefGoogle Scholar
  5. 5.
    Deshais G, Newcomb SB (2000) Mater Sci Forum 331–337:1635CrossRefGoogle Scholar
  6. 6.
    Kaufman MJ, Fink JL (1988) Acta Metall 36:2213CrossRefGoogle Scholar
  7. 7.
    Mo ZM, Zheng ZQ, Yin DF, Huang BP (1996) Mater Sci Forum 217–222:1299CrossRefGoogle Scholar
  8. 8.
    Ramgopal T, Gouma PI, Frankel GS (2002) Corrosion 58:687CrossRefGoogle Scholar
  9. 9.
    Bobby Kannan M (2005) Ph.D. Thesis, Indian Institute of Technology Bombay, India Google Scholar
  10. 10.
    Snogan F, Blanc C, Mannkowski G, Pebere N (2002) Surf Coat Technol 154:94CrossRefGoogle Scholar
  11. 11.
    Yue TM, Dong CF, Yan LJ, Man HC (2004) Mater Lett 58:630CrossRefGoogle Scholar
  12. 12.
    Najjar D, Magnin T, Warner TJ (1997) Mater Sci Eng A 238:293CrossRefGoogle Scholar
  13. 13.
    Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL (1997) J Electrochem Soc 144:2621CrossRefGoogle Scholar
  14. 14.
    Blanc C, Lavelle B, Mankowski G (1997) Corros Sci 39:495CrossRefGoogle Scholar
  15. 15.
    Guillaumin V, Mankowski G (1999) Corros Sci 41:421CrossRefGoogle Scholar
  16. 16.
    Newman RC, Shahrabi T, Sieradzki K (1989) Scripta Metall 23:71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Corrosion Science and EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations