Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5406–5410 | Cite as

Preparation, spectroscopic properties and enhanced luminescence of Tb3+-doped LuAG phosphors and transparent ceramics by introduction of Sc3+

  • Yi-kun LiaoEmail author
  • Dan-yu Jiang
  • Tao Feng
  • Na Zhang
Article

Abstract

Tb-doped LuAG(lutetium aluminum garnet) and LuSAG(lutetium scandium-aluminum garnet) precursors were synthesized through a co-precipitation process, using ammonium hydrogen carbonate as precipitator. Single-phase cubic LuAG/Tb and LuSAG/Tb phosphors were obtained after calcination at 1000 and 1200 °C, respectively. These powders could be easily sintered into corresponding transparent LuAG/Tb and LuSAG/Tb ceramics in H2 atmosphere at 1850 °C. The PL excitation and emission spectra were recorded for both phosphors and ceramics. Emission spectra of all materials were found to be typical for Tb3+, resulting from radiative relaxation of D level. Both the Tb-doped LuSAG phosphors and ceramics show higher efficient luminescence than LuAG , especially the transparent Tb-doped LuSAG ceramic shows about 150% higher luminescence intensity than transparent Tb-doped LuAG ceramic.

Keywords

Oxygen Vacancy Excitation Spectrum Effective Atomic Number Transparent Ceramic Ammonium Hydrogen Carbonate 

References

  1. 1.
    Yamamoto H, Matsukiyo H (1991) J Lumin 48–49:43CrossRefGoogle Scholar
  2. 2.
    Ustel TJ, Nikol H, Rhonda C (1998) Angew Chem, Int Ed 37:3084CrossRefGoogle Scholar
  3. 3.
    de Pooter JA, Bril AB (1975) J Electrochem Soc 122:1086CrossRefGoogle Scholar
  4. 4.
    Papagelis K, Ves S (2003) J Phys Chem Solids 64:599CrossRefGoogle Scholar
  5. 5.
    Kasamatsu T, Sekita H, Kuwano Y (1999) Appl Opt 38:5149CrossRefGoogle Scholar
  6. 6.
    Hart DW (1996) Opt Lett 21:728CrossRefGoogle Scholar
  7. 7.
    Ogino H, Yoshikawa A, Lee J-H, Nikl M, Solovieva N, Fukuda T (2003) J Cryst Growth 253:314CrossRefGoogle Scholar
  8. 8.
    Ryskin NN, Dorenbos P, van Eijk CWE, Batygov SKh (1994) J Phys Condens Matter 6:10423CrossRefGoogle Scholar
  9. 9.
    Oginoa H, Yoshikawaa A, Leea J-H, Niklb M, Solovievab N, Fukuda T (2003) J Cryst Growth 253:314CrossRefGoogle Scholar
  10. 10.
    Yikun L, Danyu J, Tao F, Jianlin S J Mater Res (to be published)Google Scholar
  11. 11.
    Ji Y-m, Jiang D-y, Shi J-l (2005) Mater Lett 59:868CrossRefGoogle Scholar
  12. 12.
    Zych E, Brecher C, Wojtowicz AJ (1997) Lingertat H 75:193Google Scholar
  13. 13.
    Matsukiyo H, Toyama H, Uehara Y, Yamamoto H (1997) J Lumin 72–74:229CrossRefGoogle Scholar
  14. 14.
    Kuwanoa Y, Sudab K, Ishizawab N, Yamada T (2004) J Cryst Growth 260:159CrossRefGoogle Scholar
  15. 15.
    Brandle CD, Barns RL (1973) J Cryst Growth 20:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.R&D Center of Shanghai Institute of ceramicsChinese Academy of SciencesShanghaiP.R. China

Personalised recommendations