Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3288–3298 | Cite as

Particle size effects in Rh/Al2O3 catalysts as viewed from a structural, functional, and reactive perspective: the case of the reactive adsorption of NO

  • Mark A. NewtonEmail author
  • Andrew J. Dent
  • Steven G. Fiddy
  • Bhrat Jyoti
  • John Evans
Size-Dependent Effects

Abstract

The structural-dynamic behaviour of γ-Al2O3 supported Rh nanoparticles under He, H2/He, and NO/He has been investigated using a newly developed methodology that permits dispersive EXAFS (EDE), diffuse reflectance infra red spectroscopy (DRIFTS), and mass spectrometry (MS) to be applied simultaneously to the study of gas-solid interactions. This reveals a considerably variability in nanoparticle habit (for 11 Å diameter nanoparticles as a function of temperature), and between 8 Å and 11 Å particles in their response to NO. The selectivity (N2/(N2 + N2O)) of the reactive interaction between NO and the supported Rh shows essentially no particle size dependence above 473 K: it is apparent, however, that considerable differences in some aspects of the structural behaviour of the 8 Å and 11 Å Rh particles do nonetheless, exist. At 373 < T < 473 K a clear divergence in structural, functional, and reactive response of the different sized supported Rh nanoparticles toward NO is observed. These observations are discussed in terms of the ability of different sized Rh particles to change structure in response to the reactive environment, the subsequent effect this has on the nitrosyl functionality that different phases may support, and the reactive pathways for NO conversion that may therefore arise.

Keywords

Nitrosyl Dinitrosyl Size Dependent Effect Particle Size Dependence Oxidative Disruption 

Notes

Acknowledgements

This work was funded by the EPSRC UK (Grant Number GR/60744/01) and the authors thank the EPSRC for the provision of post doctoral and PhD funding to MAN and BJ respectively. The ESRF are thanked for the provision of facilities within a long-term proposal awarded for this research. John James (University of Southampton), and Florian Perrin (ESRF) are gratefully acknowledged for their technical contributions to this work. Dr Gordon McDougall is also greatly thanked for the technical schematics of a novel DRIFTS cell designed and constructed at the department of chemistry, University of Edinburgh, Scotland. MAN would further like to thank the directors of the ESRF for funding for the continued development and implementation of this methodology at the ESRF for the wider use of the scientific community.

References

  1. 1.
    For example, Che M, Bennett CO (1989) Adv Catal 36:55Google Scholar
  2. 2.
    For example, Nieuwenhuys BE (2000) Adv Catal 44:259Google Scholar
  3. 3.
    Granger P, Dujardin C, Paul J-F, Leclercq G (2005) J Mol Cat A 228:241CrossRefGoogle Scholar
  4. 4.
    Arai H, Tominaga H (1976) J Catal 43:131–142CrossRefGoogle Scholar
  5. 5.
    Liang J, Wang HP, Spicer LD (1985) J Phys Chem 89:5840CrossRefGoogle Scholar
  6. 6.
    Srinivas G, Chuang SSC, Debnath S (1994) J Catal 148:748CrossRefGoogle Scholar
  7. 7.
    Dictor R (1988) J Catal 109:89CrossRefGoogle Scholar
  8. 8.
    Hyde EA, Rudham R, Rochester CH (1988) J Chem Soc Faraday Trans 80:531CrossRefGoogle Scholar
  9. 9.
    Anderson JA, Millar GJ, Rochester CH (1990) J Chem Soc Faraday Trans 86:571CrossRefGoogle Scholar
  10. 10.
    Root TW, Fisher GB, Schmidt LD (1986) J Chem Phys 85:4679 and ibid (1986) 85:4687CrossRefGoogle Scholar
  11. 11.
    Loffreda D, Simon D, Sautet P (1998) Chem Phys Letts 291:15CrossRefGoogle Scholar
  12. 12.
    Solymosi F, Bansagi T, Novak E (1988) J Catal 112:183Google Scholar
  13. 13.
    Newton MA, Dent AJ, Diaz-Moreno S, Fiddy SG, Evans J (2002) Angew Chem Intl Ed 41:2587CrossRefGoogle Scholar
  14. 14.
    Newton MA, Jyoti B, Dent AJ, Fiddy SG, Evans J (2004) Chem Comm 2382Google Scholar
  15. 15.
    Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Catal Today, DOI: 10.1016/j.cattod.2006.09.034CrossRefGoogle Scholar
  16. 16.
    Newton MA, Fiddy SG, Guilera G, Jyoti B, Evans J (2005) Chem Comm 118Google Scholar
  17. 17.
    Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Phys Chem Chem Phys 9:246CrossRefGoogle Scholar
  18. 18.
    See, for example, (a) Harkness IR, Cavers M, Rees LVC, Davidson JM, McDougall GS (1999) In: Marcus BK, Treacy MMJ, Higgins JB, Bisher ME (eds) Proceedings of the 12th International Zeolite Conference, vol IV. Materials Research Society, Warrendale, PA, p 2615; (b) Cavers M, Davidson JM, Harkness IR, McDougall GS, Rees LVC (1999) In: Froment GF, Waugh KC (eds) Reaction Kinetics and the development of catalytic processes, vol 122. Elsevier, Amsterdam, p 65Google Scholar
  19. 19.
    Binsted N (1988) PAXAS: Programme for the analysis of X-ray adsorption spectra. University of SouthamptonGoogle Scholar
  20. 20.
    Binsted N (1998) EXCURV98, CCLRC Daresbury Laboratory computer programmeGoogle Scholar
  21. 21.
    Newton MA, Dent AJ, Diaz-Moreno S, Fiddy SG, Jyoti B, Evans J (2006) Chem Eur J 12:1975CrossRefGoogle Scholar
  22. 22.
    Clausen BS, Norskov JK (2000) Topics Catal 10:221CrossRefGoogle Scholar
  23. 23.
    van Dorssen GE, Koningsberger DC (2003) Phys Chem Chem Phys 5:3549CrossRefGoogle Scholar
  24. 24.
    Vant Blik HFJ, Banzon JBAD, Huiznga T, Vis JC, Koningsberger DC, Prins R (1983) J Phys Chem 87:13Google Scholar
  25. 25.
    Suzuki A, Inada Y, Yamaguchi A, Chihara T, Yuasa M, Nomura M, Iwasawa Y (2003) Angew Chem Intl Ed 42:4795CrossRefGoogle Scholar
  26. 26.
    Martens JHA, Prins R, Koningsberger DC (1989) J Phys Chem 93:3179CrossRefGoogle Scholar
  27. 27.
    Yang AC, Garland CW (1957) J Chem Phys 61:1504CrossRefGoogle Scholar
  28. 28.
    (a) Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Pascarelli S, Turin S (2001) J Phys Chem A 105:5965; (b) Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Turin S (2002) J Phys Chem B 106:4214CrossRefGoogle Scholar
  29. 29.
    Carol LA, Mann GS (1990) Oxid Met 34:1CrossRefGoogle Scholar
  30. 30.
    For instance, Salanov AN, Savchenko VI (1994) Kinet Catal 35:722Google Scholar
  31. 31.
    Yao HC, Japar S, Shelef M (1977) J Catal 50:407CrossRefGoogle Scholar
  32. 32.
    Vis JC, van’t Blik HFJ, Huiizinga T, van Grondelle J, Priins R (1985) J Catal 95:333CrossRefGoogle Scholar
  33. 33.
    Chen JG, Colaianni ML, Chen PJ, Yates Jr JT, Fisher GB (1990) J Phys Chem 94:5059CrossRefGoogle Scholar
  34. 34.
    Beck DD, Carr CJ (1993) J Catal 144:296CrossRefGoogle Scholar
  35. 35.
    Beck DD, Capeheart TW, Wong C, Belton DN (1993) J Catal 144:311CrossRefGoogle Scholar
  36. 36.
    Burch R, Lloader PK, Cruise N (1996) Appl Catal A 375Google Scholar
  37. 37.
    Dohmae K, Nonaka T, Seno Y (2005) Surf Interface Anal 37:11CrossRefGoogle Scholar
  38. 38.
    Zimowska M, Wagner JB, Dziedzic J, Camra J, Borzecka-Prokop B, Najbar M (2006) Chem Phys Letts 417:137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mark A. Newton
    • 1
    Email author
  • Andrew J. Dent
    • 2
  • Steven G. Fiddy
    • 3
  • Bhrat Jyoti
    • 4
  • John Evans
    • 2
    • 4
  1. 1.The European Synchrotron Radiation FacilityGrenobleFrance
  2. 2.Diamond Light SourceOxfordUK
  3. 3.Synchrotron Radiation SourceWarringtonUK
  4. 4.School of ChemistryUniversity of SouthamptonSouthamptonUK

Personalised recommendations