Journal of Materials Science

, Volume 42, Issue 14, pp 5728–5735 | Cite as

Development of macropores in calcium carbonate body using novel carbonation method of calcium hydroxide/sodium chloride composite

  • Yoong LeeEmail author
  • Yeong Min Hahm
  • Shigeki Matsuya
  • Masaharu Nakagawa
  • Kunio Ishikawa


Calcium carbonate is one of the bioceramics and has been used clinically as a bone substitute in dental and orthopedic surgery. Introduction of macropores into the bioceramics is highly recommended because those pores enable tissue ingrowth and accelerated osteointegration. We tried to prepare calcium carbonate body with macropores through the new carbonation method of calcium hydroxide/sodium chloride composite. Sodium chloride acted as a water-soluble porogen in developing macropores in calcium carbonate body and was removed completely by washing with distilled water after carbonation. We investigated effects of sodium chloride content and molding pressure on the porosity and the mechanical strength of the calcium carbonate body. Through this study, it was found that the porosity of body increased with the sodium chloride content in composite and was hardly affected by molding pressure. On the other hand, the mechanical strength was increased with the molding pressure and reduced with the porosity. In addition, the increase in content of sodium chloride caused the enlargement of hole size as well as the enhancement of extent of interconnection among pores through hole. Especially, the calcium carbonate body with over 90% porosity could be prepared when 90 wt.% sodium chloride was used under 10 MPa molding pressure. Its average pore and hole size were 177 and 80 μm, respectively.


Calcium Hydroxide Average Pore Size Hole Size Tissue Ingrowth Molding Pressure 



This work was supported by both Dankook University(DKU-2004-037) and a Grant-in-aid for Scientific Research from the Ministry of Education, Sports, Culture, Science and Technology, Japan.


  1. 1.
    Maeda H, Kasuga T, Nogami M, Ueda M (2005) Sci Technol Adv Mater 6:48CrossRefGoogle Scholar
  2. 2.
    Miao X, Hu Y, Liu J, Wong AP (2004) Mater Lett 58:397CrossRefGoogle Scholar
  3. 3.
    Lemos AF, Ferreira JMF (2000) Mater Sci Eng C 11:35CrossRefGoogle Scholar
  4. 4.
    Engin NO, Tas AC (1999) J Eur Cer Soc 19:2569CrossRefGoogle Scholar
  5. 5.
    Sous M, Bareille R, Rouais F, Clement D, Amedee J, Dupuy B, Baquey C (1998) Biomaterials 19:2147CrossRefGoogle Scholar
  6. 6.
    Piattelli A, Podda G, Scrano A (1997) Biomaterials 18:623CrossRefGoogle Scholar
  7. 7.
    Landi E, Tampieri A, Celotti G, Vichi L, Sandri M (2004) Biomaterials 25:1763CrossRefGoogle Scholar
  8. 8.
    Suetsugu Y, Takahashi Y, Okamura FP, Tanaka J (2000) J Solid State Chem 155:292CrossRefGoogle Scholar
  9. 9.
    Malkaj P, Kanakis J, Dalas E (2004) J Crystal Growth 266:533CrossRefGoogle Scholar
  10. 10.
    Tong H, Ma W, Wang L, Wan P, Hu J, Cao L (2004) Biomaterials 25:3923CrossRefGoogle Scholar
  11. 11.
    Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M (2003) Biomaterials 24:3247CrossRefGoogle Scholar
  12. 12.
    Manoli F, Kanakis J, Maldaj P, Dalas E (2002) J Crystal Growth 236:363CrossRefGoogle Scholar
  13. 13.
    Girot AL, Langlois P, Sangleboeuf JC, Ouammou A, Rouxel T, Gaude J (2002) Biomaterials 23:503CrossRefGoogle Scholar
  14. 14.
    Li N, Jie Q, Zhu S, Wang R (2005) Cer Int 31:641CrossRefGoogle Scholar
  15. 15.
    Tadic D, Beckmann F, Schwarz K, Epple M (2004) Biomaterials 25:3335CrossRefGoogle Scholar
  16. 16.
    Navarro M, Valle SD, Martinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) Biomaterials 25:4233CrossRefGoogle Scholar
  17. 17.
    Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP (2004) Biomaterials 25:3671CrossRefGoogle Scholar
  18. 18.
    Ramay HR, Zhang M (2003) Biomaterials 24:3293CrossRefGoogle Scholar
  19. 19.
    Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chun SS, Park KW (2000) Biomaterials 21:1291CrossRefGoogle Scholar
  20. 20.
    Bouler JM, Trecant M, Delecrin J, Royer J, Passuti N, Daculsy G (1996) J Biomed Mater Res 32:603CrossRefGoogle Scholar
  21. 21.
    Li SH, Wijn JRD, Layrolle P, Groot KD (2002) J Biomed Mater Res 61:109CrossRefGoogle Scholar
  22. 22.
    Sanders JP, Gallagher PK (2002) Thermochimica Acta 388:115CrossRefGoogle Scholar
  23. 23.
    Lin X, Matsuya S, Udoh KI, Nakagawa M, Terada Y, Ishikawa K (2003) Archives of Bioceramics Research: Asian BioCeramics Symposium, Fukuoka, Japan vol. 3, p. 83Google Scholar
  24. 24.
    Blom EJ, Nulend JK, Klein CPAT, Kurashina K, Van MAW, Burger EH (2000) J Biomed Mater Res 50:67CrossRefGoogle Scholar
  25. 25.
    Bohner M, Lemaitre J, Van PL, Zambelli P, Merkle H, Gander B (1997) J Pharm Sci 86:565CrossRefGoogle Scholar
  26. 26.
    Otsuka M, Matsuda Y, Suwa Y, Fox J, Higuchi W (1994) J Pharm Sci 83:611CrossRefGoogle Scholar
  27. 27.
    Otsuka M, Matsuda Y, Suwa Y, Fox J, Higuchi W (1994) J Pharm Sci 83:1565CrossRefGoogle Scholar
  28. 28.
    Diamond LW, Akinfiev NN (2003) Fluid Phase Equilib 208:265CrossRefGoogle Scholar
  29. 29.
    Erdal S, Bahar I, Erman B (1998) Polymer 39(10):2035CrossRefGoogle Scholar
  30. 30.
    Elfil H, Roques H (2001) Desalination 137:177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yoong Lee
    • 1
    • 2
    Email author
  • Yeong Min Hahm
    • 2
  • Shigeki Matsuya
    • 1
  • Masaharu Nakagawa
    • 1
  • Kunio Ishikawa
    • 1
  1. 1.Department of Biomaterials, Faculty of Dental ScienceKyushu UniversityHigashiku, FukuokaJapan
  2. 2.Department of Chemical Engineering, College of EngineeringDankook UniversitySeoulKorea

Personalised recommendations