On structural and high temperature electrochemical properties of ZrO2 thin film coating on Zr metal produced by carbonate melt
- 118 Downloads
- 4 Citations
Abstract
Melt of NaCO3 can favor oxidation of Zr to form ZrO2 thin film on Zr surface, which is used to make Zr/ZrO2 oxidation/reduction electrode of pH sensor for testing elevated temperature aqueous solutions. Using SEM, EPMA, XPS, EXAFS and HRTEM, we found that ZrO2 film is tightness and solid with 20 μm thickness composed by nanometer-sized monoclinic crystals. Zr/ZrO2 interface is characterized of zoning structure according to topography and chemical composition in five zones: oxygen-rich ZrO2, ZrO2, oxygen-rich Zr metal, oxygen-bearing Zr and Zr from outmost to center. Melt oxidation process of Zr involved oxidation time, air and temperature. The air is important effect on structural and electrochemical properties of ZrO2 thin film for making elevate temperature electrochemical sensor. If oxygen air largely presented in carbonate melting process, ZrO2 thin film is not tightness and not for oxidation/reduction electrode.
Keywords
Al2O3 Crucible ZrO2 Film ZrO2 Coating Good Electrode ZrO2 Thin FilmNotes
Acknowledgements
The authors gratefully acknowledge the financial support from Ministry of Sciences and Technology of China, Sea 863 project (2001AA612020-3, 2003AA612020-3), Basic Research Project (2001DEA30041, 2002DEA30084, 2003DEA 2C021), DY105-03-01 and NSFC (20373064). Complements: NSFC (50602042).
References
- 1.Askeland DR, Phulé PP (2004) The science and engineering of materials. Thomson Learning, p 1023Google Scholar
- 2.Macdonald DD, Hettiarachchi S, Lenhart SJ (1988) J Solution Chem 17(8):719CrossRefGoogle Scholar
- 3.Macdonald DD, Hettiarachchi S, Song H, Makela K, Emorson R, Ben-Haim M (1992) J Solution Chem 21(8):849CrossRefGoogle Scholar
- 4.Ding K, Seyfried WE Jr (1996) Science 272:1634CrossRefGoogle Scholar
- 5.Zhang Z, Ding K, Seyfried WE (2001) 11th Annual V.M. Goldschmidt Conference, p 3391 Google Scholar
- 6.Zhang X, Zhang R, Hu S (2004) High Tech Lett 10:360Google Scholar
- 7.Macdonald DD, Liu J, Lee D (2004) J Appl Electrochem 34:577CrossRefGoogle Scholar
- 8.Zhang Z (2005) J Mater Res 20(2):292CrossRefGoogle Scholar
- 9.Mori R, Takahashi M, Yoko T (2005) J Mater Res 20:121CrossRefGoogle Scholar
- 10.Brenier R, Mugnier J, Mirica E (1999) Appl Surf Sci 143:85CrossRefGoogle Scholar
- 11.Krishna MG, Rao KR, Mohan S (1990) Thin Solid Films 193/194:159Google Scholar
- 12.Chua DHC, Milne WI, Zhao ZW, Yay BK, Lau SP, Carney T, White RG (2003) J Non-Cryst Solids 332:185CrossRefGoogle Scholar
- 13.Turhan I, Tepehan FZ, Tepehan GG (2005) J Mater Sci 40:1359CrossRefGoogle Scholar
- 14.Zhang R, Hu S, Zhang X (2005) Preparation of Zr/ZrO2 electrode and assemblage high temperature-pressure chemical sensors. Letters Patent 200510056407.7, ChinaGoogle Scholar
- 15.Zhang R, Zhang X, Hu S (2006) Mater Lett 60:3170CrossRefGoogle Scholar
- 16.CL Hayward (1998) In: Cabri LJ, Vaughan DJ (eds) Short course handbook. Mineralogical Association of Canada, Ottawa, ON, Canada, p 269Google Scholar
- 17.Nasdala L, Gotze J, Hanchar JM, Gaft M, Krbetschek MR (2004) In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. Emu notes mineralogy, vol 6, p 43 Google Scholar
- 18.Palacio C, Arranz A (1999) Surf Interf Analys 27:871CrossRefGoogle Scholar
- 19.Ding M, De Jong BHWS, Roosendaal SJ, Vredenberg A (2000) Geochim Cosmochim Acta 64:1209CrossRefGoogle Scholar
- 20.Erbil A, Cargill GS, Frahm R, Boehme RF (1988) Phys Rev B 37:2450CrossRefGoogle Scholar
- 21.Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565CrossRefGoogle Scholar
- 22.Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T (2002) J Phys Chem B 106:8539CrossRefGoogle Scholar
- 23.Gualtieri A, Norby P, Hanson JC, Hriljac J (1996) J Appl Crystal 29:707CrossRefGoogle Scholar
- 24.Howard CJ, Kisi EH, Roberts RB, Hill RJ (1990) J Am Ceram Soci 73:2828CrossRefGoogle Scholar