Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7730–7740 | Cite as

Kinematics, dynamics, and microstructural effects of grain boundary junctions

  • G. Gottstein
  • D. A. Molodov
  • L. S. Shvindlerman
Article

Abstract

The impact of grain boundary junctions on the coarsening of grain boundary networks is reviewed. The various kinds of junctions are introduced, the dynamic steady state configurations are defined, and their equation of motion is derived. It is shown that a limited junction mobility can effectively hinder grain growth, in particular in fine grained materials. The theory is substantiated by computer simulations and supported by experimental results. We propose to utilize Grain Boundary Junction Engineering as an effective tool for microstructure control.

Keywords

Boundary System Triple Junction Boundary Motion Triple Line Boundary Mobility 

Notes

Acknowledgments

Financial assistance from the Deutsche Forschungsgemeinschaft (Grant Go/335/10) is gratefully acknowledged. The cooperation was supported by the Deutsche Forschungsgemeinschaft (DFG Grant 436 RUS 113/714/0-1(R)) and the Russian Foundation of Fundamental Research (Grant DFG-RRFI 05-02-04017).

References

  1. 1.
    Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press, Baton RougeGoogle Scholar
  2. 2.
    Gottstein G, Shvindlerman LS (2002) Acta Mater 50:703CrossRefGoogle Scholar
  3. 3.
    Gottstein G, Ma Y, Shvindlerman LS (2005) Acta Mater 53:1535CrossRefGoogle Scholar
  4. 4.
    Gottstein G, Shvindlerman LS (2005) Scripta Mater 52:863CrossRefGoogle Scholar
  5. 5.
    Gottstein G, Shvindlerman LS (2006) Scripta Mater 54:1065CrossRefGoogle Scholar
  6. 6.
    Galina AV, Fradkov VE, Shvindlerman LS (1987) Phys Met Metall 63:165Google Scholar
  7. 7.
    Shvindlerman LS, Gottstein G, Czubayko U, Sursaeva VG (1997). In: Terry R-McNelly (ed) Recrystallization and related phenomena. Monterey Institute of Advanced Studies, p. 255Google Scholar
  8. 8.
    Czubayko U, Sursaeva VG, Gottstein G, Shvindlerman LS (1998) Acta mater 46:5863CrossRefGoogle Scholar
  9. 9.
    Gottstein G, King AH, Shvindlerman LS (2000) Acta mater 48:397CrossRefGoogle Scholar
  10. 10.
    Von Neumann J (1952) Metal interfaces. American Society for Testing Materials, Cleveland, p. 1108Google Scholar
  11. 11.
    Mullins WW (1956) J Appl Phys 27:900CrossRefGoogle Scholar
  12. 12.
    Gottstein G, Shvindlerman LS (2005) Mat Sci Technol 21:1261CrossRefGoogle Scholar
  13. 13.
    Kawasaki K, Nagai T, Nakashima K (1989) Philos Magn 60:399CrossRefGoogle Scholar
  14. 14.
    Weygand D, Brechet Y (1998) Philos Magn B 78:329CrossRefGoogle Scholar
  15. 15.
    Zheng M, Gottstein G (2002) Aluminium 78:878Google Scholar
  16. 16.
    Novikov V Yu, (2004) Mat Science Forum 467–470; 1093–1098.Google Scholar
  17. 17.
    Shvindlerman LS,Gottstein GZ (2004) Metallk 95:239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • G. Gottstein
    • 1
  • D. A. Molodov
    • 1
  • L. S. Shvindlerman
    • 1
    • 2
  1. 1.Institut für Metallkunde und MetallphysikRWTH AachenAachenGermany
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow Distr.Russia

Personalised recommendations