Journal of Materials Science

, Volume 42, Issue 14, pp 5657–5660 | Cite as

Luminescence from praseodymium doped AlN thin films deposited by RF magnetron sputtering and the effect of material structure and thermal annealing on the luminescence

  • Muhammad MaqboolEmail author
  • Hugh H. Richardson
  • Martin E. Kordesch


Thin films of Praseodymium doped AlN are deposited on silicon (111) substrates at 77 K and 950 K by rf magnetron sputtering method. About 500–1000 nm thick films are grown at 100–200 watts RF power and 5–8 mTorr nitrogen, using a metal target of Al with Pr. X-rays diffraction results show that films deposited at 77 K are amorphous and those deposited at 950 K are crystalline. Cathodoluminescence studies are performed at room temperature and luminescence peaks are observed in a wide range from ultraviolet to infrared region. The most intense peak is obtained in green at 526 nm from amorphous films as a result from 3P13H5 transition. In crystalline films the intense peak was obtain in red at 648 nm as a result from 3P03F2 transition. Films are thermally activated at 1300 K for half an hour in a nitrogen atmosphere. Thermal activation enhances the intensity of luminescence. Two peaks at 488 nm and 505 nm merged after thermal activation, giving rise to a single peak at 495 nm.


Thermal Activation Green Emission Praseodymium Blue Emission Amorphous Film 


  1. 1.
    Caldwell ML, Martin AL, Dimitrova VI, Van Patten PG, Kordesch ME, Richardson HH (2001) Appl Phys Lett 78(9):1246CrossRefGoogle Scholar
  2. 2.
    M Maqbool, Richardson HH, Kordesch ME (2005) Mater. Res. Soc. Symp. Proc. vol. 831 Article E8.12.1, Materials Research SocietyGoogle Scholar
  3. 3.
    Maqbool M, Richardson HH, Van Patten PG, Kordesch ME (2004) Mat. Res. Soc. Symp. Proc. 798:8.5.1–8.5.5, Materials Research SocietyGoogle Scholar
  4. 4.
    Suyver JF, Kik PG, Kimura T, Polman A, Franzo G, Coffa S (1999) Nucl Instr Meth Phys Res B148:497CrossRefGoogle Scholar
  5. 5.
    Lozykowski HJ, Jadwisienczak WM, Brown I (2000) J Appl Phys 88(1):210CrossRefGoogle Scholar
  6. 6.
    Gruber JB, Zandi B, Lozykowski HJ, Jadwisienczak WM (2002) J Appl Phys 91(5):2929CrossRefGoogle Scholar
  7. 7.
    Lozykowski HJ (1993) Phys Rev B48:17758CrossRefGoogle Scholar
  8. 8.
    Morrison CA, Wortman DE (1992) Opt Mater 1:195CrossRefGoogle Scholar
  9. 9.
    Tsang WT, Logan RA (1986) Appl Phys Lett 49:1686CrossRefGoogle Scholar
  10. 10.
    Steckl AJ, Birkhahn R (1998) Appl Phys Lett 73:1700CrossRefGoogle Scholar
  11. 11.
    Levinshtein M, Rumyantsev S, Shur M (eds) (2001) Properties of advanced semiconductor materials, GaN, AlN, InN BN, SiC, SiGe. Wiley, New YorkGoogle Scholar
  12. 12.
    Vetter U, Zenneck J, Hofsass H (2003) Appl Phys Lett 83:2145CrossRefGoogle Scholar
  13. 13.
    Chao LC, Steckl AJ (1999) Appl Phys Lett 74(16):2364CrossRefGoogle Scholar
  14. 14.
    Zavada JM, Mair RA, Ellis CJ, Lin JY, Jiang HX, Wilson RG, Grudoski PA, Dupuis RD (1999) Appl Phys Lett 75(6):790CrossRefGoogle Scholar
  15. 15.
    Birkham R, Garter M, Stickl AJ (1999) Appl Phys Lett 74(15):2161CrossRefGoogle Scholar
  16. 16.
    Overberg M, Abernathy CR, MacKenzie JD, Pearton SJ, Wilson RG, Zavada JM (2001) Mater Sci Eng B81:121CrossRefGoogle Scholar
  17. 17.
    MacKenzie JD, Abernathy CR, Pearton SJ, Hommerich U, Seo JT, Wilson RG, Zavada JM (1998) Appl Phys Lett 72(21):2710CrossRefGoogle Scholar
  18. 18.
    Wang SZ, Yoon SF, He L, Shen XC (2001) J Appl Phys 90(5):2314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Muhammad Maqbool
    • 1
    Email author
  • Hugh H. Richardson
    • 2
  • Martin E. Kordesch
    • 2
  1. 1.Department of Science & MathematicsMount Olive CollegeMount OliveUSA
  2. 2.Condensed Matter & Surface Sciences ProgramOhio UniversityAthensUSA

Personalised recommendations