Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6385–6395 | Cite as

The aluminium effect on gel-derived iron silica glasses

  • M. G. Ferreira da Silva
  • M. A. Valente
Article
  • 51 Downloads

Abstract

Sol–gel aluminosilicate glasses containing 1 mol% of Fe2O3 and different amounts of Al2O3 (1; 2; 3; 4; 6 and 8 mol%) have been investigated. The ultraviolet–visible–near infrared spectrophotometry (UV–VIS–NIR), electron paramagnetic resonance (EPR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), has been employed to obtain information about the structural evolution of the samples. The concentration of Al2O3, the treatment temperature and the furnace atmosphere play an important role in the structural incorporation of iron. The treatment of the samples, in air and under reducing conditions, results in remarkable changes in the UV–VIS–NIR and EPR spectra. In the samples were detected nanoparticles. The low temperature blocking of the nanoparticles magnetic moments has been clearly evidenced in the EPR derivative spectra at low temperatures.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Nitrogen Oxide Electron Paramagnetic Resonance Signal Electron Paramagnetic Resonance Line 

References

  1. 1.
    Encheva G, Samuneva B, Djambaski P, Kashchieva E, Paneva D, Mitov I (2004) J Non-Cryst Sol 345:615Google Scholar
  2. 2.
    Sanchez SAP, Castañeda SP, Martınez JR, Ruiz F, Chumakov Y, Domınguez O (2003) J Non-Cryst Sol 325:251CrossRefGoogle Scholar
  3. 3.
    Lutz T, Estournés C, Guille JL (1998) J Sol--Gel Sci Technol 13:929CrossRefGoogle Scholar
  4. 4.
    Niznansky D, Viart N, Rehspriger JL (1997) J Sol--Gel Sci Technol 8:615Google Scholar
  5. 5.
    Bolton JR, Wertz JE (1994) Electron paramagnetic resonance, elementary theory and practical applications. John Willey, New YorkGoogle Scholar
  6. 6.
    Griscom DL (1980) J Non-Cryst Sol 40:211CrossRefGoogle Scholar
  7. 7.
    Griscom DL (1985) J Non-Cryst Sol 73:51CrossRefGoogle Scholar
  8. 8.
    Rao JL, Murali A, Rao ED (1996) J Non-Cryst Sol 202:215 CrossRefGoogle Scholar
  9. 9.
    Peteanu M, Cociu L, Ardelean I (1994) J Mater Sci Technol 10: 97 CrossRefGoogle Scholar
  10. 10.
    Berger R, Kliava J, Yahiaoui EM, Bissey JC, Zinsou PK, Béziade P (1995) J Non-Cryst Sol 180:151CrossRefGoogle Scholar
  11. 11.
    Kliava J, Berger R, Servant Y, Emery J, Grenèche JM Trokss J (1996) J Non-Cryst Sol 202:205CrossRefGoogle Scholar
  12. 12.
    Camara B, Oel HJ (1984) J Non-Cryst Sol 65:161CrossRefGoogle Scholar
  13. 13.
    Tanabe S, Hirao K, Soga N (1988) J Non-Cryst Sol 100:388CrossRefGoogle Scholar
  14. 14.
    Tanaka K, Kamiya K, Matsuoka M, Yoko T (1987) J Non-Cryst Sol 94:365CrossRefGoogle Scholar
  15. 15.
    Roy S, Ganguli D (1996) J Non-Cryst Sol 195:38CrossRefGoogle Scholar
  16. 16.
    Montenero A, Friggeri M, Giori DC, Belkhiria N, Pye LD (1986) J Non-Cryst Sol 84:45 CrossRefGoogle Scholar
  17. 17.
    Mendiratta SK, Sousa EG (1988) J Mater Sci Lett 7:733CrossRefGoogle Scholar
  18. 18.
    Tanaka K, Kamiya K, Yoko T, Tanabe S, Hirao K, Soga N (1991) Phys Chem Glass 32(1):16Google Scholar
  19. 19.
    Wood DL, Rabinovich EM, Johnson DW JR., Machesney JB, Vogel EM (1983) J Am Ceram Soc 66:693 CrossRefGoogle Scholar
  20. 20.
    Ferreira da Silva MG (2001) J Mater Sci 36:3247 CrossRefGoogle Scholar
  21. 21.
    Ferreira da Silva MG, Valente MA (2000) J of Sol-Gel Sci Technol 17:47 CrossRefGoogle Scholar
  22. 22.
    Barbieri L, Bianchi CL, Bruni S, Cariati F, Leonelli C, Manfredini T, Paganelli M, Pellacani GP, Russo U (1993) J Non-Cryst Sol 155:231CrossRefGoogle Scholar
  23. 23.
    Ferreira da Silva MG, Navarro JMF (1996) J Sol-Gel Sci and Technol 6:169CrossRefGoogle Scholar
  24. 24.
    Cotton FA, Wilkinson G (1972) Advanced inorganic chemistry. Interscience Publishers, New YorkGoogle Scholar
  25. 25.
    Griscom DL (1978) J Non-Cryst Sol 31:241CrossRefGoogle Scholar
  26. 26.
    Friebele EJ, Griscon DL, Hickmott TW (1985) J Non- Cryst Sol 71:351CrossRefGoogle Scholar
  27. 27.
    Hosono H, Abe Y (1991) Phys Rev B 43(14):11966CrossRefGoogle Scholar
  28. 28.
    Bogomolova L, Jachkin VA, Prushinsky SA, Stefanovsky SV, Teplyakov YG, Teplyakov YG, Caccavale F (1997) J Non- Cryst Sol 220:109 CrossRefGoogle Scholar
  29. 29.
    M.G. Ferreira da Silva - to be publishedGoogle Scholar
  30. 30.
    Klein LC, Gallo TA, Garvey GJ (1964) J Non-Cryst Sol 63:23CrossRefGoogle Scholar
  31. 31.
    Parekh K, Upadhyay RV, Mehta RV, Srinivas D (2000) J Appl Phys 88 (5):2799CrossRefGoogle Scholar
  32. 32.
    Berger R, Bissey JC, Kliava J, Soulard B (2001) J Magm Magn Mater 167:129CrossRefGoogle Scholar
  33. 33.
    Berger R, Kliava J, Bissey JC, Baïetto V (1998) J Phys Condens Matter 10:8559CrossRefGoogle Scholar
  34. 34.
    Berger R, Kliava J, Bissey JC, Baïetto V (2000) J Appl Phys 87(10):7389CrossRefGoogle Scholar
  35. 35.
    Koksharov YA, Gubin SP, Kosobudsky ID, Beltran M, Khodorkovsky Y, Tishin AM (2000) J Appl Phys 88 3, 1:1587CrossRefGoogle Scholar
  36. 36.
    Berger R, Bissey JC, Kliava J, Daubric H, Estournès C (2001) J Magm Magn Mater 234:535 CrossRefGoogle Scholar
  37. 37.
    Bentivegna F, Ferré J, Nývlt M, Jamet JP, Imhoff D, Canva M, Brun A, Veillet P, Visnovsky S, Chaput F, Boilot JP (1998) J Appl Phys 7776: 83–12Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Departamento de Engenharia Cerâmica e do VidroCICECO, Universidade de AveiroAveiroPortugal
  2. 2.Departamento de FísicaUniversidade de AveiroAveiroPortugal

Personalised recommendations