Journal of Materials Science

, Volume 41, Issue 19, pp 6362–6373 | Cite as

Transformation of Poly(dimethylsiloxane) into thin surface films of SiOx by UV/Ozone treatment. Part I: Factors affecting modification

Article

Abstract

UV/ozone treatment of poly(dimethylsiloxane) (PDMS) was used to produce thin surface films of SiOx. Films of PDMS were applied by spin-coating onto gold-coated silicon wafers having (100) orientation. Characterization of the UV/ozone system was performed to map the spatial distribution of intensities of UV radiation. This mapping was used to ensure reproducible modification of films and to aid in the understanding of modification as measured by advancing contact angle using deionized water and x-ray photoelectron spectroscopy (XPS). Rutherford backscattering spectroscopy (RBS) was used to measure thickness of the PDMS films. Treatment reduced the wetting angle, in some cases from a value greater than 100° to a value less than 5°. High resolution XPS spectra were used to study the nature of the modified PDMS film and its relationship to the characteristics of the unmodified PDMS. High resolution XPS spectra in the Si 2p region show that O–Si–C bonds in the siloxane, observed prior to treatment, are converted to SiOx, where x is between 1.6 and 2. Modified films also contain some oxidized carbon components. The time required to reduce the contact angle to a minimum value was greater for the thicker PDMS film samples. The effects of ozone alone (without UV) and UV radiation at 184.9 and 253.7 nm (without ozone) were also investigated. The results of UV/ozone treatment are compared to results achieved by means of plasma surface oxidation.

References

  1. 1.
    Judy JW (2001) Smart Mater Struct 10:1115CrossRefGoogle Scholar
  2. 2.
    National Toxicology Program Report Number IMM90006, “Contact Hypersensitivity Studies in Female B6C3F1 Mice,” U.S. Department of Health and Human ServicesGoogle Scholar
  3. 3.
    Duffy DC, Schueller OJA, Brittain ST, Whitesides GM (1999) J Micromech Microeng 9:211CrossRefGoogle Scholar
  4. 4.
    Jo B-H, Lerberghe LM, Motsegood KM, Beebe DG (2000) J Microelectro-mech Syst 9:76CrossRefGoogle Scholar
  5. 5.
    Xia Y, Whitesides GM (1998) Angew Chem Int Ed 37:550CrossRefGoogle Scholar
  6. 6.
    Seyferth D (1990) Adv Chem Ser, No 224:565Google Scholar
  7. 7.
    Egitto FD, Vukanovic V, Taylor GN (1990) In: D’Agostino R (ed) Plasma deposition, treatment, and etching of polymers, Academic Press, Inc., San Diego, CA, pp 321–422, and references thereinGoogle Scholar
  8. 8.
    Egitto FD, Matienzo LJ (1994) IBM J Res Develop 38(4):423CrossRefGoogle Scholar
  9. 9.
    Roberts ED (1973) J Electrochem Soc 120:1716Google Scholar
  10. 10.
    Feneberg P, Krekeler U (1976) US Patent 3, 959, 105Google Scholar
  11. 11.
    Owen MJ, Smith PJ (1994) J Adhes Sci Technol 8(10):1063Google Scholar
  12. 12.
    Taylor GN, Wolf TM, private communicationGoogle Scholar
  13. 13.
    Srinivasan R, Braren B (1990) In: Fouassier J-P, Rabek JF (eds) Lasers in polymer science and technology: applications, vol III. CRC Press, Inc. Boca Raton, Florida, pp 133–179Google Scholar
  14. 14.
    Graubner V-M, Jordan R, Nuyken O, Lippert T, Hauer M, Schnyder B, Wokaun A (2002) Appl Surf Sci 197–198:786CrossRefGoogle Scholar
  15. 15.
    Arkles B, Janeiro B, Berry DH, Ezbiansky KA, Composto R In: Proceedings of Silicones in Coatings III, Barcelona, Spain, 28–30 March, 2000, (The Paint Research Association, Teddington Middlesex, UK, 2000) p 1Google Scholar
  16. 16.
    Sharma J, Berry DH, Composto RJ, Dai H-L (1999) J Mater Res 14:990Google Scholar
  17. 17.
    Li J, Mayer JW, Matienzo LJ, Emmi F (1992) Mater Chem Phys 32:390CrossRefGoogle Scholar
  18. 18.
    Vig JR (1987) In: Mittal KL (ed) Treatise on clean surface technology. Plenum Press, New York, pp 1–26Google Scholar
  19. 19.
    Rabek JF (1975) In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics: vol 14, Degradation of polymers. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands, pp 423–538Google Scholar
  20. 20.
    Eliasson B, Hirth M, Kogelschatz U (1987) J Phys D: Appl Phys 20:1421CrossRefGoogle Scholar
  21. 21.
    Eliasson B, Kogelschatz U (1991) IEEE Trans Plasma Sci 19(6):1063CrossRefGoogle Scholar
  22. 22.
    Greenwood OD, Tasker S, Badyal JPS (1994) J Polym Sci A: Polym Chem 32:2479CrossRefGoogle Scholar
  23. 23.
    Egitto FD, Matienzo LJ, Spalik JM, Fuerniss SJ (1995) In: Proceedings of the MRS spring meeting:polymer/inorganic interfaces II, 385 MRS, San Francisco, CA, USA, April 17–21, p. 245Google Scholar
  24. 24.
    Mirley CL, Koberstein JT (1995) Langmuir 11:1049CrossRefGoogle Scholar
  25. 25.
    Niwano M, Suemitsu M, Ishibashi Y, Takeda Y, Miyamoto N, Honma K (1992) J Vac Sci Technol A 10:3171CrossRefGoogle Scholar
  26. 26.
    Niwano M, Kageyama J, Kinashi K, Miyamoto N, Honma K (1992) J Vac Sci Technol A 12(2):465CrossRefGoogle Scholar
  27. 27.
    Egitto FD, Emmi F, Horwath RS, Vukanovic V (1985) J Vac Sci Technol B 3:893CrossRefGoogle Scholar
  28. 28.
    Green PF, Palmstrom CJ, Mayer JW, Kramer EJ (1985) Macromolecules, 18:501CrossRefGoogle Scholar
  29. 29.
    Doolittle LR (1985) Nucl Instrum Methods, B9:344Google Scholar
  30. 30.
    Hillborg H, Ankner JG, Gedde UW, Smith GD, Yasuda HK, Wilkstrom K (2000) Polymer 41:6851CrossRefGoogle Scholar
  31. 31.
    Efimenko K, Wallace WE, Genzer J (2002) J Colloid and Interface Sci, 254:306CrossRefGoogle Scholar
  32. 32.
    Schnyder B, Lippert T, Kotz R, Wokaun A, Grqubner V-M, Nuyken V-M (2003) Surf Sci 532–535:1067CrossRefGoogle Scholar
  33. 33.
    Mckellar JF, Allen NS (1979) Photochemistry of man-made polymers. Applied Science Publishers LTD, London, pp 169–171Google Scholar
  34. 34.
    Sarno D, Egitto FD, Gurumurthy CK, Henderson DW, unpublished resultsGoogle Scholar
  35. 35.
    Sarno D, Matienzo LJ, Winnacker SW, unpublished resultsGoogle Scholar
  36. 36.
    Hillborg H, Gedde UW (1998) Polymer 39:1991CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Endicott Interconnect Technologies, Inc.EndicottUSA

Personalised recommendations