Journal of Materials Science

, Volume 41, Issue 19, pp 6347–6352 | Cite as

Fabrication of Al/AlN composites by in situ reaction

  • K. B. Lee
  • H. S. Sim
  • H. KwonEmail author


The tensile properties and microstructures of various Al alloys fabricated by the pressureless infiltration method under a nitrogen atmosphere were examined. The spontaneous infiltration of molten metal into the powder bed occurred at 800 °C for 1 h under a nitrogen atmosphere. As a result, it was possible to fabricate Al alloys reinforced with AlN particles formed by in situ reaction. A significant strengthening even in the control alloy occurred due to the formation of in situ AlN particle even without an addition of artificial reinforcement. Strength values of the control alloy were increased with decreasing Al powders in bottom powders bed. In addition, tensile strength in Al–Mg alloys was increased with Mg content.


Molten Metal Auger Electron Spectroscopy Unreinforced Material Pressureless Infiltration Control Alloy 



This work was supported by Kookmin University Research Fund, 2005.


  1. 1.
    Selvaduray G, Sheet L (1993) Mater Sci Tech 9:463CrossRefGoogle Scholar
  2. 2.
    Hou Q, Mutharasan R, Koczak M (1995) Mater Sci Eng A 195:121CrossRefGoogle Scholar
  3. 3.
    Scholz H, Greil P (1990) J Euro Ceram Soc 6:237CrossRefGoogle Scholar
  4. 4.
    Mortensen A, Jin I (1992) Int Mater Rev 37:101CrossRefGoogle Scholar
  5. 5.
    Ibrahim A, Mohamed FA, Lavernia ES (1991) J Mater Sci 26:1137CrossRefGoogle Scholar
  6. 6.
    Koczak MJ, Premkumar MK (1993) J Metall 45:44Google Scholar
  7. 7.
    Asthana R (1998) J Mater Sci 33:1679CrossRefGoogle Scholar
  8. 8.
    Aghajanian MK, Burke JT, White DR, Nagelberg AS (1989) SAMPE Q 20(4):43Google Scholar
  9. 9.
    Aghajanian MK, Rocazella MA, Burke JT, Keck SD (1991) J Mater Sci 6:447CrossRefGoogle Scholar
  10. 10.
    Urquhart AW (1991) Advanced Mater. Process, July 25Google Scholar
  11. 11.
    Lee KB, Kim YS, Kwon H (1998) Metall Mater Trans A 29:3087CrossRefGoogle Scholar
  12. 12.
    Lee KB, Kwon H (1999) Metall Mater Trans A 30:2999CrossRefGoogle Scholar
  13. 13.
    Lee KB, Ahn JP, Kwon H (2001) Metall Mater Trans A 32:1007CrossRefGoogle Scholar
  14. 14.
    Lee KB, Sim HS, Cho SY, Kwon H (2001) Mater Sci Eng 302:227CrossRefGoogle Scholar
  15. 15.
    Hong SI, Gray III GT (1992) Acta Metall Mater 40:3299CrossRefGoogle Scholar
  16. 16.
    Manoharan M, Lewandowski JJ (1990) Acta Metall Mater 38:489CrossRefGoogle Scholar
  17. 17.
    Manoharan M, Lewandowski JJ (1992) Mater Sci Eng A150:179CrossRefGoogle Scholar
  18. 18.
    Shang JK, Ritchie RO (1989) Acta Metall 37:2267CrossRefGoogle Scholar
  19. 19.
    Ravi Kumar NV, Dwarakadasa ES (2000) Composites Part A 31:1139CrossRefGoogle Scholar
  20. 20.
    Chou MC, Chao CH (1996) Metall Mater Trans A 30:2005CrossRefGoogle Scholar
  21. 21.
    Kulkarni MD, Robi PS, Prasad RC, Ramakrishnan P (1994) Scripta Metall Mater 31:237CrossRefGoogle Scholar
  22. 22.
    CRC (1994) In: Shackelford JF, Alexander W, Park JS (eds), Materials Science and Engineering Handbook, p 43Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Advanced Materials EngineeringKookmin UniversitySeoulKorea

Personalised recommendations