Journal of Materials Science

, Volume 42, Issue 8, pp 2538–2542 | Cite as

Comments on the phenomena underlying pressure stimulated currents in dielectric rock materials

Article

Abstract

It has been observed that there is a systematic detection of weak pressure stimulated electric currents (PSC) in polycrystalline and amorphous solids during or after an application of mechanical stress upon them. An interpretation of the mechanisms governing the electrical behaviour of solid structures when they undergo uniaxial stress tests is presented. In numerous experiments, repetitive stress loadings and unloadings have been conducted, the corresponding PSC have been recorded, and the behaviour of the material is interpreted with respect to PSC emission. The dominant conclusion is that the behaviour of the solid depends on the overall stress it has suffered and that PSC is related with a memory effect which associates current emission with the previous history of the sample.

References

  1. 1.
    Hayakawa M (ed) (1999) In: Electromagnetic phenomena related to earthquake prediction. Terra Scientific PublishingGoogle Scholar
  2. 2.
    Hayakawa M, Fujinawa Y (eds) (1994) In: Electromagnetic phenomena related to earthquake prediction. Terra Scientific Publishing Company, TokyoGoogle Scholar
  3. 3.
    Hayakawa M, Molchanov OA (eds) (2002) In: Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. TERRAPUB, TokyoGoogle Scholar
  4. 4.
    Molchanov OA, Hayakawa M (1995) Geophys Res Lett 22:3091CrossRefGoogle Scholar
  5. 5.
    Vallianatos F, Tzanis A (1998) Phys Chem Earth 23:933CrossRefGoogle Scholar
  6. 6.
    Enomoto J, Hashimoto H (1990) Nature 346:641CrossRefGoogle Scholar
  7. 7.
    Stavrakas I, Anastasiadis C, Triantis D, Vallianatos F (2003) Nat Hazards Earth Syst Sci 3:243CrossRefGoogle Scholar
  8. 8.
    Varotsos P, Alexopoulos K (1984a) Tectonophysics 110:73CrossRefGoogle Scholar
  9. 9.
    Park SK, Johnston MJS, Madden TR, Morgan FD, Morrison HF (1993) Rev Geophys 31:117CrossRefGoogle Scholar
  10. 10.
    Hadjicontis V, Mavromatou C (1994) Geophys Res Lett 21:1687CrossRefGoogle Scholar
  11. 11.
    Anastasiadis C, Triantis D, Stavrakas I, Vallianatos F (2004) Ann Geophys 47:21Google Scholar
  12. 12.
    Yoshida S, Clint OC, Sammonds PR (1998) Geophys Res Lettters 25:1577CrossRefGoogle Scholar
  13. 13.
    Stavrakas I, Anastasiadis C, Triantis D, Vallianatos F (2003) Nat Hazard Earth Syst Sci 3:243Google Scholar
  14. 14.
    Stavrakas I, Triantis D, Agioutantis Z, Maurigianakis S, Saltas V, Vallianatos F, Clarke M (2004) Nat Hazard Earth Syst Sci 4:563Google Scholar
  15. 15.
    Triantis D, Stavrakas I, Anastasiadis C, Kyriazopoulos A, Vallianatos F (2006) Phys Chem Earth 31:234Google Scholar
  16. 16.
    Anastasiadis C, Triantis D, Kyriazopoulos A, Stavrakas I In: Proceedings of the 5th National Conference of the Hellenic Society for Non-Destructive Testing, Athens, Greece, 2005Google Scholar
  17. 17.
    Kaiser J (1953) Archiv Eisenhuttenwesen 24:43Google Scholar
  18. 18.
    Lavrov A (2003) Int J Rock Mech Min Sci 40:151CrossRefGoogle Scholar
  19. 19.
    Anastassopoulos A, Kouroussis D, Nikolaidis V, Proust A, Dutton AG, Blanch M, Jones LE, Vionis P, Lekou D, van Delft DRV, Joosse P, Philippidis T, Kossivas T, Fernando G (2002) J Acoustic Emiss 20:229–237Google Scholar
  20. 20.
    Beattie AG (1983) J Acoust Emiss 2:95Google Scholar
  21. 21.
    Lavrov A (2005) Strain 41:135CrossRefGoogle Scholar
  22. 22.
    Shkuratnik VL, Lavrov AV (1999) J Min Sci 35:471CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ElectronicsTechnological Educational Institution (TEI) of AthensAthensGreece
  2. 2.Department of Electronic & Computer EngineeringBrunel UniversityUxbridgeUK

Personalised recommendations