Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4245–4253 | Cite as

Carbon fiber/ceramic matrix composites: processing, oxidation and mechanical properties

  • Samanta Rafaela de Omena Pina
  • Luiz Claudio Pardini
  • Inez Valéria Pagotto YoshidaEmail author
Article

Abstract

Ceramic matrix composites (CMC) have been considered in the last two decades to be alternative materials for highly demanding thermo-structural applications. Pre-ceramic polymers offer significant advantages for manufacturing these composites by the polymer impregnation method. In the present work, carbon fiber/silicon oxycarbide (C/SiCxOy) composites were obtained by controlled pyrolysis of carbon fiber/bridge polysilsesquioxane composites (COMPOSITE 1) followed by infiltration/pyrolysis cycles with a polycyclic silicone network. The polysilsesquioxane showed high wettability and adhesion on the carbon fiber surface. An improvement of the thermo-oxidation resistance and a reduction of the porosity as a function of the number of polycyclic silicone infiltration cycles were observed. An extra improvement in the thermo-oxidation protection was found when the C/SiCxOy composite was coated with a poly(phenylsilsesquioxane) layer (COMPOSITE 2). Shear properties for the composites showed a dependence on the nature of the matrix. The average in-plane shear strength and the shear modulus were 44.2 ± 1.9 MPa and 2.2 ± 0.5 GPa for the polymeric matrix composite (COMPOSITE 1), respectively. For the ceramic matrix composite (COMPOSITE 2) the values were 14.2 ± 4.1 MPa and 15.0 ± 2.0 GPa, respectively. The properties of the latter composite were also governed by the microstructure of the ceramic matrix.

Keywords

Carbon Fiber Pyrolysis Temperature Ceramic Matrix Composite Polymeric Matrix Composite Ceramic Phase 

Notes

Acknowledgements

We gratefully acknowledge financial support from CNPq and FAPESP (Process 00/06882-5).

References

  1. 1.
    Wang C, Zhu Z, Hou X, Li H (2000) Carbon 38:1821CrossRefGoogle Scholar
  2. 2.
    Erauzkin E, Llorca J (1997) Key Eng Mater 127:761Google Scholar
  3. 3.
    Wilshire B, Carreño F (2000) J Euro Ceram Soc 20:463CrossRefGoogle Scholar
  4. 4.
    Ohnabe H, Masaki M, Onozuka M, Miyahara M, Sasa T (1999) Compos Part A Appl Sci Manuf 30:489CrossRefGoogle Scholar
  5. 5.
    Mckee DW (1987) Carbon 25:551CrossRefGoogle Scholar
  6. 6.
    Eherburger P, Lahaye J (1981) Carbon 19:7CrossRefGoogle Scholar
  7. 7.
    Manoucha LM (1994) Carbon 32:213CrossRefGoogle Scholar
  8. 8.
    Zhou X, Zhang C, Ma J, Zhou A (1999) Key Eng Mater 164:43Google Scholar
  9. 9.
    Shimoo T, Okamura K, Toyoda F (2000) J Mater Sci 35:3811CrossRefGoogle Scholar
  10. 10.
    Radovanovic E, Gozzi MF, Gonçalves MC, Yoshida IVP (1999) J Non-Cryst Solids 248:37CrossRefGoogle Scholar
  11. 11.
    Wonderly C, Grenestedt J, Ferlung G, E Cepus (2005) Compos Part B Eng 36:417CrossRefGoogle Scholar
  12. 12.
    Gozzi MF, Gonçalves MC, Yoshida IVP (1999) J Mater Sci 34:155CrossRefGoogle Scholar
  13. 13.
    Schiavon MA, Sorarù GD, Yoshida IVP (2002) J Non-Cryst Solids 304:76CrossRefGoogle Scholar
  14. 14.
    Schiavon MA, Sorarù GD, Yoshida IVP (2004) J Non-Cryst Solids 348:156CrossRefGoogle Scholar
  15. 15.
    Greil P (1995) J Am Ceram Soc 78:835CrossRefGoogle Scholar
  16. 16.
    Kaindl A, Lehner W, Greil P, Kim DJ (1999) Mater Sci Eng A Struct 260:101CrossRefGoogle Scholar
  17. 17.
    Krenkel W, Heidenreich B, Renz R (2002) Adv Eng Mater 4:427CrossRefGoogle Scholar
  18. 18.
    Davies IJ, Hamada H (2001) Adv Compos Mater 10:77CrossRefGoogle Scholar
  19. 19.
    Twitty A, Russellfloyd RS, Cooke RG, Harris B. (1995) J Eur Ceram Soc 15:455CrossRefGoogle Scholar
  20. 20.
    ASTM D5379-93 (1993) In Standard method for shear properties of composite materials by the V-notched beam method. American Society for the Testing of Materials, New YorkGoogle Scholar
  21. 21.
    Iosipescu N (1967) J Mater 2:537Google Scholar
  22. 22.
    Tarnopo’skii YM, Arnautov AK, Kulakov AVL (1999) Compos Part A Appl Sci Manuf 30:879CrossRefGoogle Scholar
  23. 23.
    Redondo SUA, Radovanovic E, Torriani IL, Yoshida IVP (2001) Polymer 42:1319CrossRefGoogle Scholar
  24. 24.
    Schiavon MA, Radovanovic E, Yoshida IVP (2002) Powder Technol 123:232CrossRefGoogle Scholar
  25. 25.
    Schiavon MA, Redondo SUA, Pina SRO, Yoshida IVP (2002) J Non-Cryst Solids 304:92CrossRefGoogle Scholar
  26. 26.
    Li X, King TA (1996) J Non-Cryst Solids 204:235CrossRefGoogle Scholar
  27. 27.
    Bornhauser P, Calzaferri G (1996) J Phys Chem 100:2035CrossRefGoogle Scholar
  28. 28.
    Bellamy LJ (1966) In The infrared spectra of complex molecules, Methuen, LondonGoogle Scholar
  29. 29.
    Hurwitz FI, Kacik TA, Bu XY, Masnovi J, Heimann PJ, Beyene K (1995) J Mater Sci 30:3130CrossRefGoogle Scholar
  30. 30.
    Belot V, Corriu RJP, Leclerq D, Mutin PH, Vioux A (1992) J Non-Cryst Solids 144:287CrossRefGoogle Scholar
  31. 31.
    Renlund GM, Prochaska S, Doremus RH (1991) J Mater Res 6:2716CrossRefGoogle Scholar
  32. 32.
    Pantano CG, Singh AK, Zhang H (1999) J Sol-Gel Sci Technol 14:7CrossRefGoogle Scholar
  33. 33.
    Manocha LM, Manocha S, Patel KB, Glogar P (2000) Carbon 38:1481 CrossRefGoogle Scholar
  34. 34.
    Liu JY (2000) In Shear test fixture design for orthotropic materials, International Community for Composite Engineering, Denver, ICCE/7Google Scholar
  35. 35.
    Gilat A, Goldberg RK, Roberts GD (2005) In Strain rate sensitivity of epoxy resin in tensile and shear loading, NASA/TM, 2005-213595Google Scholar
  36. 36.
    Odergard G, Kumosa M (2000) Compos Sci Technol 60:2917CrossRefGoogle Scholar
  37. 37.
    Chiang MYM, Jianmei H (2002) Compos Part B Eng 33:461CrossRefGoogle Scholar
  38. 38.
    Durán A, Aparicio M, Rebstock K, Vogel W (1997) Key Eng Mater 127:287Google Scholar
  39. 39.
    Bröndsted P, Heredia FE, Evans AG (1994) J Am Ceram Soc 77:2569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Samanta Rafaela de Omena Pina
    • 1
  • Luiz Claudio Pardini
    • 2
  • Inez Valéria Pagotto Yoshida
    • 1
    Email author
  1. 1.Instituto de QuímicaUniversidade Estadual de Campinas – UNICAMPCampinasBrazil
  2. 2.Centro Técnico AeroespacialInstituto de Aeronáutica e Espaço, AMRSão José dos CamposBrazil

Personalised recommendations