Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4265–4269 | Cite as

Luminescent stability of water-soluble PbS nanoparticles

  • Xu-Sheng ZhaoEmail author
  • She-Yang Xu
  • Li-Yan Liang
  • Tao Li
  • Sam Cauchi
Article

Abstract

Thiol-capped PbS semiconductor nanoparticles (NPs) stabilized with a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were colloidally prepared at room temperature. UV–vis spectroscopy and photoluminescence (PL) spectra showed an obvious red-shift in both the absorption shoulder and PL peak with the increase of DTG/Pb molar ratio. Room temperature photoluminescence quantum efficiency (PLQE) of freshly prepared PbS NPs (7–11%) remained higher than 5% upon aging for 3 weeks when the NPs were stored in an ice-bath in the dark, and higher than 5% for at least 5 weeks when additional DTG ligand was introduced into the nanoparticle solution every 2 weeks. The combination of reasonable room temperature quantum efficiency and strong, stable luminescence covering the 1.3 μm telecommunication window make these NPs promising materials in optical devices and telecommunications.

Keywords

Acetate Trihydrate Sodium Sulfide Extra Ligand Absorption Shoulder Telecommunication Window 

Notes

Acknowledgements

Xusheng Zhao is grateful to the support of K.C. Wong Education Foundation, Hong Kong. This work was partly supported by National Natural Science Foundation of China, Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, Guangdong Natural Science Foundation and Guangzhou municipal government. The authors thank Prof. Eugenia Kumacheva from the Department of Chemistry, University of Toronto, for fruitful discussions.

References

  1. 1.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706CrossRefGoogle Scholar
  2. 2.
    Alivisatos AP (1996) Science 271:933CrossRefGoogle Scholar
  3. 3.
    Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) J Am Chem Soc 125:12567CrossRefGoogle Scholar
  4. 4.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013CrossRefGoogle Scholar
  5. 5.
    Chan WCW, Nie SM (1998) Science 281:2016CrossRefGoogle Scholar
  6. 6.
    Peng AZ, Peng X J Am Chem Soc (2001) 123:183CrossRefGoogle Scholar
  7. 7.
    Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) J Phys Chem B 106:7177CrossRefGoogle Scholar
  8. 8.
    Aldana J, Wang YA, Peng X (2001) J Am Chem Soc 123:8844CrossRefGoogle Scholar
  9. 9.
    Bakueva L, Musikhin S, Hines MA, Chang T-WF, Tzolov M, Scholes GD, Sargent EH (2003) Appl Phys Lett. 82:2895CrossRefGoogle Scholar
  10. 10.
    Hines MA, Scholes GD (2003) Adv Mater 15:1844CrossRefGoogle Scholar
  11. 11.
    Lee S-M, Jun Y-W, Cho S-N, Cheon J (2002) J Am Chem Soc 124:11244CrossRefGoogle Scholar
  12. 12.
    Kane RS, Cohen RE, Silbey R (1996) Chem Mater 8:1919CrossRefGoogle Scholar
  13. 13.
    Patel AA, Wu F, Zhang JZ, Torres-Martinez CL, Mehra RK, Yang Y, Risbud SH (2000) J Phys Chem B 104:11598CrossRefGoogle Scholar
  14. 14.
    Wang S, Yang S (2000) Langmuir 16:389CrossRefGoogle Scholar
  15. 15.
    Chen S, Truax LA, Sommers JM (2000) Chem Mater 12:3864CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2002) Langmuir 18:5287CrossRefGoogle Scholar
  17. 17.
    Wundke K, Auxier J, Schülzgen A, Peyghambarian N, Borelli NF (1999) Appl Phys Lett 75:3060CrossRefGoogle Scholar
  18. 18.
    Sukhovatkin V, Musikhin S, Gorelikov I, Cauchi S, Bakueva L, Kumacheva E, Sargent EH (2005) Optics Lett 13:344Google Scholar
  19. 19.
    Bakueva L, Gorelikov I, Musikhin S, Zhao XS, Sargent EH, Kumacheva E (2004) Adv Mater 16:926CrossRefGoogle Scholar
  20. 20.
    Zhao XS, Gorelikov I, Musikhin S, Cauchi S, Sukhovatkin V, Sargent EH, Kumacheva E (2005) Langmuir 21:1086CrossRefGoogle Scholar
  21. 21.
    Qu L, Peng X (2002) J Am Chem Soc 124:2049CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xu-Sheng Zhao
    • 1
    Email author
  • She-Yang Xu
    • 1
  • Li-Yan Liang
    • 1
  • Tao Li
    • 1
  • Sam Cauchi
    • 2
  1. 1.Guangzhou Institute of Chemistry, Chinese Academy of SciencesGuangzhouP.R. China
  2. 2.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations