Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4254–4259 | Cite as

Synthesis and characterization of zinc oxide fine particles coated with titania/PDMS hybrid

  • Masato Nakade
  • Makoto OgawaEmail author
Article

Abstract

Zinc oxide nanoparticles were coated with titania/polydimethylsiloxane hybrid by co-hydrolysis and co-condensation of the sols prepared from titanium tetraisopropoxide and methoxy-functionalized polydimethylsiloxane to synthesize a new class of hierarchically designed composite materials. The successful formation of the shell, which is composed of titania/polydimethylsiloxane hybrid, was evidenced by SEM, TEM, IR, EDS and zeta potential data. The hydrophobicity and the dispersibility in decamethylcyclopentasiloxane changed dramatically by the shell formation.

Keywords

Contact Angle PDMS Coating Layer Zinc Oxide Solubility Parameter 

References

  1. 1.
    Ogawa M (1998) Roy Soc Chem Annu Rep Part C 94:209Google Scholar
  2. 2.
    Schmidt G (2004) Nanoparticles: theory to application. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Caruso F (2001) Adv Mater 13:11CrossRefGoogle Scholar
  4. 4.
    Davies R, Schurr GA, Meenan P, Nelson RD, Bergna HE, Brevett CAS, Goldbaum RH (1998) Adv Mater 10:1264CrossRefGoogle Scholar
  5. 5.
    Caruso F, Möhwald H (1999) Langmuir 15:8276CrossRefGoogle Scholar
  6. 6.
    Yoshida W, Castro RP, Jou J-D, Cohen Y (2001) langmuir 17:5882CrossRefGoogle Scholar
  7. 7.
    Caruso RA, Antonietti M, (2001) Chem Mater 13:3272CrossRefGoogle Scholar
  8. 8.
    Ocaña M, Hsu WP, Matijević E (1991) Langmuir 7:2911CrossRefGoogle Scholar
  9. 9.
    Iwasaki T, Satoh M, Masuda T, Fujita T (2000) J Mater Sci 35:4025CrossRefGoogle Scholar
  10. 10.
    Türkoğlu M, Yener S (1997) Int J Cosmet Sci 19:193CrossRefGoogle Scholar
  11. 11.
    Mitchnick MA, Fairhurst D, Pinnell SR (1999) J Am Acad Dermatol 40:85CrossRefGoogle Scholar
  12. 12.
    Grasset F, Saito N, Li D, Park D, Sakaguchi I, Ohashi N, Haneda H, Roisnel T, Mornet S, Duguet E (2003) J Alloys Compd 360:298CrossRefGoogle Scholar
  13. 13.
    Fangli Y, Peng H, Chunlei Y, Shulan H, Jinlin L (2003) J Mater Chem 13:634CrossRefGoogle Scholar
  14. 14.
    Special issue on ‘Organic–inorganic nanocomposite materials’ (2001) Chem Mater 13Google Scholar
  15. 15.
    Novak BM (1993) Adv Mater 5:422CrossRefGoogle Scholar
  16. 16.
    Schmidt H (1994) J Non-Cryst Solids 178:302CrossRefGoogle Scholar
  17. 17.
    Wen J, Wilkes GL (1996) Chem Mater 8:1667CrossRefGoogle Scholar
  18. 18.
    Yamada N, Yoshinaga I, Katayama S (1997) J Mater Chem 7:1491CrossRefGoogle Scholar
  19. 19.
    Nakade M, Kameyama K, Ogawa M (2004) J Mater Sci 39:4131CrossRefGoogle Scholar
  20. 20.
    Wang B , Wilkes GL (1991) J Polym Sci Part A Polym Chem 29:905CrossRefGoogle Scholar
  21. 21.
    Kobayashi T, Terada T, Ikeda S (1989) Shikizai 62:524 (in Japanese)Google Scholar
  22. 22.
    (a) Smith AL (1960) Spectrochim Acta 16:87; (b) Smith AL (1963) Spectrochim Acta 19:849; (c) Smith AL (1984) Analysis of silicones. Krieger Publishing Company, FloridaGoogle Scholar
  23. 23.
    Nakade M, Ichihashi K, Ogawa M (2005) J Sol-Gel Sci Tech 36:257CrossRefGoogle Scholar
  24. 24.
    Bahnemann DW, Kormann C, Hoffmann MR (1987) J Phys Chem 91:3789CrossRefGoogle Scholar
  25. 25.
    Degen A, Kosec M (2000) J Eur Ceram Soc 20:667CrossRefGoogle Scholar
  26. 26.
    Barringer EA, Bowen HK (1985) Langmuir 1:420CrossRefGoogle Scholar
  27. 27.
    Kirby BJ, Hasselbrink Jr EF (2004) Electrophoresis 25:203CrossRefGoogle Scholar
  28. 28.
    Barton AFM (1983) RC handbook of solubility parameters and other cohesion parameters. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Research and Development DivisionKOSÉ CorporationItabashi-ku, TokyoJapan
  2. 2.Department of Earth SciencesWaseda UniversityShinjuku-ku, TokyoJapan

Personalised recommendations