Journal of Materials Science

, Volume 41, Issue 23, pp 7675–7682 | Cite as

What does it mean to be special? The significance and application of the Brandon criterion

  • Alexander H. KingEmail author
  • Shashank Shekhar


We review the application of Brandon’s criterion to identifying so-called “special” grain boundaries. The underlying principles of the Brandon criterion, and others that have followed it, are explained, and the choices of particular parameters within the criteria are considered in the light of experimental information in the literature. It is suggested that varying choices of the parameters may be appropriate for differing applications. An experimental study of the stability of CSL-related triple junctions is used to evaluate the applicability of Brandon-like criteria to these microstructural features.


Dihedral Angle Burger Vector Triple Junction Boundary Dislocation Critical Separation 



This work was supported by the US Department of Energy, under grant number DE-FG02-01ER45940.


  1. 1.
    Brandon DG (1966) Acta Metall 14:1479CrossRefGoogle Scholar
  2. 2.
    Warrington DH, Boon M (1975) Acta Metall 23:599CrossRefGoogle Scholar
  3. 3.
    Watanabe T (1984) Res Mechanica 11:47Google Scholar
  4. 4.
    Pumphrey PH (1976) In: Smith DA, Chadwick GA (ed) Grain boundary structure and properties. Academic Press, London, p 139Google Scholar
  5. 5.
    Palumbo G, Aust KT, Lehockey EM, Erb U, Lin P (1998) Scr Mater 38:1685CrossRefGoogle Scholar
  6. 6.
    Ishida Y, McLean M (1973) Philos Mag 27:1125CrossRefGoogle Scholar
  7. 7.
    Gjostein NA, Rhines FN (1959) Acta Metall 7:319CrossRefGoogle Scholar
  8. 8.
    Read WT, Shockley W (1950) Phys Rev 78:275CrossRefGoogle Scholar
  9. 9.
    Turnbull D, Hoffman RE (1954) Acta Metall 2:419CrossRefGoogle Scholar
  10. 10.
    Nakamichi I (1990) J Sci Hiroshima Univ A 54:49Google Scholar
  11. 11.
    Nakamichi I (1996) in Intergranular and interphase boundaries in materials. Pt 1, p 47Google Scholar
  12. 12.
    Dannenberg R, King AH (2000) J Appl Phys 88:2623CrossRefGoogle Scholar
  13. 13.
    Dimos D, Chaudhari P, Mannhart J (1990) Phys. Rev B 41:4038CrossRefGoogle Scholar
  14. 14.
    Wang JY, King AH, Zhu YM, Wang YL, Suenaga M (1998) Philos Mag A 78:1037CrossRefGoogle Scholar
  15. 15.
    Schober T, Balluffi RW (1970) Philos Mag 21:109CrossRefGoogle Scholar
  16. 16.
    Clark WAT, Smith DA (1978) Philos Mag A 38:367CrossRefGoogle Scholar
  17. 17.
    Vitek V, Sutton AP, Smith DA, Pond RC (1979) Philos Mag A 39:213CrossRefGoogle Scholar
  18. 18.
    Chen FS, King AH (1988) Acta Metall 36:2827CrossRefGoogle Scholar
  19. 19.
    Sutton AP, Vitek V (1983) Philos Trans R Soc Lond Ser A 309:1CrossRefGoogle Scholar
  20. 20.
    Balluffi RW, Schober T (1972) Scripta Metall 6:697CrossRefGoogle Scholar
  21. 21.
    Pumphrey PH (1972) Scripta Metall 6:107CrossRefGoogle Scholar
  22. 22.
    Bollmann W, Michaut B, Sainfort G (1972) Physica Status Solidi A 13:637 CrossRefGoogle Scholar
  23. 23.
    Ichinose H, Ishida Y (1981) Philos Mag A 43:1253CrossRefGoogle Scholar
  24. 24.
    King AH, Smith DA (1980) Acta Crystallogr A 36:335CrossRefGoogle Scholar
  25. 25.
    Bacmann JJ, Silvestre G, Petit M, Bollmann W (1981) Philos Mag A 43:189CrossRefGoogle Scholar
  26. 26.
    Watanabe T (1983) Philos Mag A 47:141CrossRefGoogle Scholar
  27. 27.
    Kim CS, Rollett AD, Rohrer GS (2006) Scr Mater 54:1005CrossRefGoogle Scholar
  28. 28.
    Neumann FE (1885) Vorlesungen uber die Theorie der Elasticictat. Teubner, LeipzigGoogle Scholar
  29. 29.
    Kremer R, Narayanan R, Shekhar S, King AH (2005) J Mater Sci 40:2795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations