Journal of Materials Science

, Volume 41, Issue 23, pp 7814–7823 | Cite as

Nanoscale precipitation and mechanical properties of Al-0.06 at.% Sc alloys microalloyed with Yb or Gd

  • Marsha E. van DalenEmail author
  • David C. Dunand
  • David N. Seidman


Dilute Al-0.06 at.% Sc alloys with microalloying additions of 50 at. ppm of ytterbium (Yb) or gadolinium (Gd) are studied with 3D local-electrode atom-probe (LEAP) tomography for different aging times at 300 °C. Peak-aged alloys exhibit Al3(Sc1−xYbx) or Al3(Sc1−xGdx) precipitates (L12 structure) with a higher number density (and therefore higher peak hardness) than a binary Al-0.06 at.% Sc alloy. The Al–Sc–Gd alloy exhibits a higher number density of precipitates with a smaller average radius than the Al–Sc–Yb alloy, leading to a higher hardness. In the Al–Sc–Gd alloy, only a small amount of the Sc is replaced by Gd in the Al3(Sc1−xGdx) precipitates, where x = 0.08. By contrast, the hardness incubation time is significantly shorter in the Al–Sc–Yb alloy, due to the formation of Yb-rich Al3(Yb1−xScx) precipitates to which Sc subsequently diffuses, eventually forming Sc-rich Al3(Sc1−xYbx) precipitates. For both alloys, the precipitate radii are found to be almost constant to an aging time of 24 h, although the concentration and distribution of the RE elements in the precipitates continues to evolve temporally. Similar to microhardness at ambient temperature, the creep resistance at 300 °C is significantly improved by RE microalloying of the binary Al-0.06 at.% Sc alloy.


Aging Time Threshold Stress Al3Sc Peak Hardness High Number Density 



This research was supported by the United States Department of Energy through grant DE-FG02–98ER45721. Atom-probe tomographic measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), using a LEAP tomograph purchased with funding from the NSF-MRI (DMR-0420532, Dr. Charles Bouldin monitor) and ONR-DURIP (N00014–0400798, Dr. Julie Christodoulou monitor) programs. The authors thank Richard Karnesky and Keith Knipling (Northwestern University) for helpful discussions.


  1. 1.
    Hyland RW (1992) Metall Trans A 23A:1947CrossRefGoogle Scholar
  2. 2.
    Toropova, LS, Eskin DG, Kharakterova ML, Dobatkina TV, Advanced Aluminum Alloys Containing Scandium. Gordon & Breach, 1998Google Scholar
  3. 3.
    Novotny GM, Ardell AJ (2001) Mater Sci Eng A A318:144CrossRefGoogle Scholar
  4. 4.
    Marquis EA, Seidman DN (2001) Acta Mater 49:1909CrossRefGoogle Scholar
  5. 5.
    Royset J, Ryum N (2005) Int Mater Rev 50(2):1Google Scholar
  6. 6.
    Knipling KE, Dunand DC, Seidman DN (2006) Zeitschrift Metallkunde 97(3):246CrossRefGoogle Scholar
  7. 7.
    Marquis EA, Seidman DN, Asta M, Woodward C, Ozolins V (2003) Phys Rev Lett 91:36101CrossRefGoogle Scholar
  8. 8.
    Marquis EA, Seidman DN, Dunand DC (2003) Acta Mater 51:4751CrossRefGoogle Scholar
  9. 9.
    Fuller, CB, Ph.D Thesis (2003) Northwestern University; = 147; as on July 5, 2006Google Scholar
  10. 10.
    Fuller CB, Murray JL, Seidman DN (2005) Acta Mater 53:5401CrossRefGoogle Scholar
  11. 11.
    Fuller CB, Seidman DN (2005) Acta Mater 53:5415CrossRefGoogle Scholar
  12. 12.
    Fuller CB, Seidman DN, Dunand DC (2003) Acta Mater 51:4803CrossRefGoogle Scholar
  13. 13.
    Forbord B, Lefebvre W, Danoix F, Hallem H, Marthinsen K (2004) Scripta Mater 51:333CrossRefGoogle Scholar
  14. 14.
    Clouet E, Nastar M, Barbu A, Sigli C, Martin G (2005) Solid–Solid Phase Transformations in Inorganic Materials TMS 1Google Scholar
  15. 15.
    Hallem H, Lefebvre W, Forbord B, Danoix F, Merthinsen K (2006) Mater Sci and Eng A 421(1–2):154CrossRefGoogle Scholar
  16. 16.
    Tolley A, Radmilovic V, Dahmen U (2005) Scripta Mater 52:621CrossRefGoogle Scholar
  17. 17.
    van Dalen ME, Dunand DC, Seidman DN (2005) Acta Mat 53:4225CrossRefGoogle Scholar
  18. 18.
    Zalutskaya OI, Kontseyoy VG, Karamishev NI, Ryabov VR, Zalutskii II, Dopovidi Akademii Nauk Ukr RSR (1970) 751Google Scholar
  19. 19.
    Palenzona AJ (1972) J Less-Common Metals 29:289CrossRefGoogle Scholar
  20. 20.
    Mondolfo LF (1976) Aluminum alloys: structure and properties. Butterworths, LondonGoogle Scholar
  21. 21.
    Bergner D, Chi NV (1977) Wissenschaftliche Zeitschrift der Padagogischen Hochschule “Krupskaja NK”, Halle XV, Heft 3Google Scholar
  22. 22.
    Harada Y, Dunand DC (2002) Mater Sci Eng A 329–331:686CrossRefGoogle Scholar
  23. 23.
    Marquis EA, Dunand DC (2002) Scripta Mater 47:503CrossRefGoogle Scholar
  24. 24.
    Sawtell RR, Morris JW (1988) Proc Dispersion Strengthened Aluminum Alloys. TMS, Warrendale, PA, p 409Google Scholar
  25. 25.
    Sawtell RR (1988) Exploratory alloy development in the system Al–Sc–X PhD Thesis. University of California, BerkeleyGoogle Scholar
  26. 26.
    Massalski, Binary Alloy Phase Diagrams (1990) (ASM Int.,)Google Scholar
  27. 27.
    Karnesky RA, Van Dalen ME, Dunand DC, Seidman DN (2006) Scripta Mater 55:437CrossRefGoogle Scholar
  28. 28.
    Murray JL (1998) J Phase Equil 19(4):380CrossRefGoogle Scholar
  29. 29.
    Kononenko VI, Golubev SV (1990) Russian Metall 2:197Google Scholar
  30. 30.
    Kelly TF, Gribb TT, Olson JD, Martens RL, Shepard JD, Wiener SA, Kunicki TC, Ulfig RM, Lenz DR, Strennen EM, Oltman E, Bunton JH, Strait DR (2004) Micros Microanal 10:373CrossRefGoogle Scholar
  31. 31.
    Hellman OC, Vandenbroucke JA, Rüsing J, Isheim D, Seidman DN (2000) Micros Microanal 6:437Google Scholar
  32. 32.
    Hellman OC, Vandenbroucke J, du Rivage JB, Seidman DN (2002) Mater Sci Eng A 327(1):29CrossRefGoogle Scholar
  33. 33.
    Miller MK (2000) Atom probe tomography: analysis at the atomic level. Kluwer Academic, New YorkCrossRefGoogle Scholar
  34. 34.
    Hyde JM, English CA (2001) Proc MRS Fall 2000 Meeting 650:1Google Scholar
  35. 35.
    Knipling, KE (2006) Ph.D Thesis, Northwestern University Google Scholar
  36. 36.
    Marquis EA Seidman DN, Asta M, Woodward C (2006) Acta Mater 54:119CrossRefGoogle Scholar
  37. 37.
    Schmuck C, Caron P, Hauet A, Blavette D (1997) Phil Mag A 76(3):527CrossRefGoogle Scholar
  38. 38.
    Schmuck C (1997) Ph.D Thesis, Univeristy of RouenGoogle Scholar
  39. 39.
    Sudbrack C, Decomposition behavior in model Ni-Al-Cr-X superalloys : temporal evolution and compositional pathways on a nanoscale. 2004, Ph.D Thesis, Northwestern University: = 16; as on July 5, 2006Google Scholar
  40. 40.
    Sudbrack CK, Noebe RD, Seidman DN (2006) Phys Rev B 73:212101CrossRefGoogle Scholar
  41. 41.
    De Geuser F, Lefebvre W, Blavette D (2006) Phil Mag Lett 86(4):227CrossRefGoogle Scholar
  42. 42.
    Ziman JM (1979) Models of disorder: the theoretical physics of homogeneously disordered systems. Cambridge University Press, CambridgeGoogle Scholar
  43. 43.
    Cadek J (1988) Creep in metallic materials. Elsevier, New YorkGoogle Scholar
  44. 44.
    Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon, OxfordGoogle Scholar
  45. 45.
    Lagneborg R, Bergman B (1976) Metal Sci 10:20CrossRefGoogle Scholar
  46. 46.
    Tabor D (1956) Br J App Phys 7:159CrossRefGoogle Scholar
  47. 47.
    Marquis EA, Seidman DN, Dunand DC (2002) Acta Mater 50:4021CrossRefGoogle Scholar
  48. 48.
    Clouet E, Lae L, Epicier T, Lefebvre W, Nastar M, Deschamps A (2006) Nature Mater 5:482CrossRefGoogle Scholar
  49. 49.
    Miura Y, Horikawa K, Yamada K, Nakayama M (1994) Aluminum Alloys: Their Phys Mech Prop 2:161Google Scholar
  50. 50.
    Di Z, Saji S, Fujitani W, Hori S (1987) Trans Japan Inst Metals 28(10):827CrossRefGoogle Scholar
  51. 51.
    Gayle FW, Vander Sande JB (1984) Scripta Met 18:473CrossRefGoogle Scholar
  52. 52.
    Yuan GS, Zhao ZY, Zhu XD, Kuang JP, Liu Y, Xing ZJ (1991) Mat Sci Eng A 134:1179CrossRefGoogle Scholar
  53. 53.
    Norman AF, Tsakiropoulos P (1991) Mat Sci Eng A 134:1144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Marsha E. van Dalen
    • 1
    Email author
  • David C. Dunand
    • 1
  • David N. Seidman
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Northwestern University Center for Atom-Probe Tomography (NUCAPT)EvanstonUSA

Personalised recommendations