Journal of Materials Science

, Volume 42, Issue 11, pp 3699–3707 | Cite as

Impact properties of glass/plant fibre hybrid laminates

  • Carlo SantulliEmail author


The use of plants fibre reinforced composites has continuously increased during recent years. Their low density, higher environmental friendliness, and reduced cost proved particularly attractive for low-tech applications e.g., in building, automotive and leisure time industry. However, a major limitation to the use of these materials in structural components is unsatisfactory impact performance. An intermediate approach, the production of glass/plant fibre hybrid laminates, has also been explored, trying to obtain materials with sufficient impact properties, whilst retaining a reduced cost and a substantial environmental gain. A survey is given on some aspects, crucial for the use of glass/plant fibre hybrid laminates in structural components: performance of hybrids when subjected to impact testing; the effect of laminate configuration, manufacturing procedure and fibre treatment on impact properties of the composite. Finally, indications are provided for a suitable selection of plant fibres with minimal extraction damage and sufficient toughness, for introduction in an impact-resistant glass/plant fibre hybrid laminate.


Maleic Anhydride Impact Property Flax Fibre Jute Fibre Interfacial Shear Stress 


  1. 1.
    Abrate S (1998) Impact on composite structures, Cambridge University Press, ISBN 0 521 47389 6Google Scholar
  2. 2.
    Schrauwen B, Bertens P, Peijs T (2002) Polym Polym Compos 10:259Google Scholar
  3. 3.
    Ji B, Gao H (2004) J Mech Phys Solids 52:1963CrossRefGoogle Scholar
  4. 4.
    McLaughlin EC (1980) J Mater Sci 15:886CrossRefGoogle Scholar
  5. 5.
    Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107CrossRefGoogle Scholar
  6. 6.
    Joseph K, Tolědo Filho RD, James B, Thomas S, Hecker de Carvalho L (1999) Revista Brasileira de Engenharia Agricola e Ambiental 3:367CrossRefGoogle Scholar
  7. 7.
    Santulli C, Janssen M, Jeronimidis G (2005) J Mater Sci 40:3581CrossRefGoogle Scholar
  8. 8.
    Zafeiropoulos NE, Baillie CA, Hodgkinson JM (2002) Compos Part A 33:1185CrossRefGoogle Scholar
  9. 9.
    Hughes M, Sébe G, Hague J, Hill C, Spear M, Mott L (2000) Compos Interface 7:13CrossRefGoogle Scholar
  10. 10.
    Eichhorn SJ, Young RJ (2004) Compos Sci Technol 64:767CrossRefGoogle Scholar
  11. 11.
    Gong M, Smith I (2004) Wood Sci Technol 37:435CrossRefGoogle Scholar
  12. 12.
    Lamy B, Pomel C (2002) J Mater Sci Lett 21:1211CrossRefGoogle Scholar
  13. 13.
    Joffe R, Andersons J, Wallstrom L (2003) Compos Part A 34:603CrossRefGoogle Scholar
  14. 14.
    Hariharan ABA, Khalil HPSA (2005) J Compos Mater 39:663CrossRefGoogle Scholar
  15. 15.
    Marom G, Fisher S, Tuler FR, Wagner HD (1978) J Mater Sci 13:1419CrossRefGoogle Scholar
  16. 16.
    Pavithran C, Mukherjee PS, Brahmakumar M, Damodaran AD (1991) J Mater Sci 26:455CrossRefGoogle Scholar
  17. 17.
    Idicula M, Malhotra SK, Joseph K, Thomas S (2005) Compos Sci Technol 65:1077CrossRefGoogle Scholar
  18. 18.
    John K, Naidu SV (2004a) J Reinf Plast Comp 23:1253CrossRefGoogle Scholar
  19. 19.
    John K, Naidu SV (2004b) J Reinf Plast Comp 23:1601CrossRefGoogle Scholar
  20. 20.
    John K, Naidu SV (2004c) J Reinf Plast Comp 23:1815CrossRefGoogle Scholar
  21. 21.
    Mohan RK, Shridhar MK, Rao RMVGK (1983) J Mater Sci Lett 2:99CrossRefGoogle Scholar
  22. 22.
    Dieu TV, Liem NT, Mai TT, Tung NH (2004) JSME Int J A 47:570CrossRefGoogle Scholar
  23. 23.
    Pavithran C, Mukherjee PS, Brahmakumar M (1991) J Mater Sci Lett 10:91CrossRefGoogle Scholar
  24. 24.
    Goutianos S, Peijs T (2003) Adv Compos Lett 12:237Google Scholar
  25. 25.
    Varma IK, Krishnan SRA, Krishnamoorthy S (1989) Composites 20:383CrossRefGoogle Scholar
  26. 26.
    Clark RA, Ansell MP (1986) J Mater Sci 31:269CrossRefGoogle Scholar
  27. 27.
    Kalaprasad G, Mathew G, Pavithran C, Thomas S (2003) J Appl Polym Sci 89:432CrossRefGoogle Scholar
  28. 28.
    Benevolenski OI, Karger-Kocsis J, Mieck KP, Reussmann T (2000) J Thermoplast Compos Mater 13:481CrossRefGoogle Scholar
  29. 29.
    Wambua P, Ivens J, Verpoest I (2003) Compos Sci Technol 63:1259CrossRefGoogle Scholar
  30. 30.
    Santulli C (2006) J Mater Sci 41:1255CrossRefGoogle Scholar
  31. 31.
    Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bossi CR (2000) Indus Crop Prod 11:145CrossRefGoogle Scholar
  32. 32.
    Agarwal R, Saxena NS, Sharma KB, Thomas S, Pothan LA (2003) Indian J Pure Appl Phys 41:448Google Scholar
  33. 33.
    Ray D, Sarkar BK, Rana AK, Bose NR (2001) B Mater Sci 24:129CrossRefGoogle Scholar
  34. 34.
    Rowell RM (2004) Mol Cryst Liq Cryst 418:881CrossRefGoogle Scholar
  35. 35.
    Ghosh P, Dev D, Samanta AK (1998) J Appl Polym Sci 68:1139CrossRefGoogle Scholar
  36. 36.
    Vilaseca F, Corrales F, Llop ME, Pelach MA, Mutje P (2005) Compos Interface 12:725CrossRefGoogle Scholar
  37. 37.
    Mieck KP, Nechwatal A, Knobelsdorf C (1995) Angewandte Makromolekulare Chemie 224:73CrossRefGoogle Scholar
  38. 38.
    Gassan J, Bledzki AK (1997) Compos Part A 28:1001CrossRefGoogle Scholar
  39. 39.
    Gassan J, Gutowski VS (2000) Compos Sci Technol 60:2857CrossRefGoogle Scholar
  40. 40.
    Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stabil 86:401CrossRefGoogle Scholar
  41. 41.
    Rong MZ, Zhang MQ, Liu Y, Yan HM, Yang CG, Zeng HM (2002) Polym Compos 23:182CrossRefGoogle Scholar
  42. 42.
    Yuan XW, Jayaraman K, Bhattacharyya D (2004) J Adhes Sci Technol 18:1027CrossRefGoogle Scholar
  43. 43.
    Thwe MM, Liao K (2002) Plasti Rubber Compos 31:422CrossRefGoogle Scholar
  44. 44.
    Alvarez VA, Vázquez A (2005) Compos Part A, Online, DecemberGoogle Scholar
  45. 45.
    Biagiotti J, Puglia D, Torre L, Kenny JM (2004) Polym Compos 25:470CrossRefGoogle Scholar
  46. 46.
    Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Compos Part A 36:1637CrossRefGoogle Scholar
  47. 47.
    Foulk JA, Chao WY, Akin DE, Dodd RB, Layton PA (2004) J Polym Environ 12:165CrossRefGoogle Scholar
  48. 48.
    de Medeiros ES, Agnelli JAM, Joseph K, de Carvalho LH, Mattoso LHC (2005) Polym Compos 26:1CrossRefGoogle Scholar
  49. 49.
    Jacob M, Thomas S, Varughese KT (2004) Appl Polym Sci 93:2305CrossRefGoogle Scholar
  50. 50.
    Mwaikambo LY, Bisanda ETN (1999) Polymer Testing 18:181CrossRefGoogle Scholar
  51. 51.
    Junior CZP, de Carvalho LH, Fonseca VM, Monteiro SN, d’Almeida JRM (2004) Polym Test 23:131CrossRefGoogle Scholar
  52. 52.
    Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Appl Compos Mater 7:295CrossRefGoogle Scholar
  53. 53.
    Velmurugan R, Manikandan V (2005) Indian J Eng Mater Sci 12:563Google Scholar
  54. 54.
    Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G, Thomas S (2004) Polym Int 53:1624CrossRefGoogle Scholar
  55. 55.
    Kalaprasad G, Pradeep P, Mathew G, Pavithran C, Thomas S (2000) Compos Sci Technol 60:2967CrossRefGoogle Scholar
  56. 56.
    Joseph K, Thomas S, Pavithran C (1996) Polymer 37:5139CrossRefGoogle Scholar
  57. 57.
    Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, Tripathy SS (2003) Compos Sci Technol 63:1377CrossRefGoogle Scholar
  58. 58.
    Li HJ, Sain MM (2003) Polym-Plast Technol Eng 42:853CrossRefGoogle Scholar
  59. 59.
    Morye SS, Wool RP (2005) Polym Compos 26:407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Construction Management and EngineeringUniversity of Reading – Centre for BiomimeticsReadingUK
  2. 2.Dipartimento di Ingegneria ElettricaUniversità di Roma - La SapienzaRomaItaly

Personalised recommendations