Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4435–4440 | Cite as

Effect of neodymium on microstructure and corrosion resistance of AZ91 magnesium alloy

  • Y. L. Song
  • Yao Hui LiuEmail author
  • S. R. Yu
  • X. Y. Zhu
  • S. H. Wang
Article

Abstract

The corrosion behavior of a new Mg–9Al–1Zn (AZ91) magnesium alloy containing neodymium (Nd) is investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), immersion tests and electrochemical experiments. The results indicate that Nd decreases the size and volume fraction of the β (Mg17Al12) phase and forms Al2Nd in the alloy. In addition, during corrosion, Nd is incorporated into corrosion film in the form of Nd2O3. AZ91 alloy containing 1.0 wt.% Nd possesses an outstanding passivation property and excellent corrosion resistance. The corrosion resistance enhancement is attributed to the reduction in the size and volume fraction of the β phase and the incorporation of Nd2O3 in the corrosion film.

Keywords

Corrosion Resistance Corrosion Rate Magnesium Alloy Nd2O3 AZ91 Alloy 

Notes

Acknowledgements

This work was supported by The Program of Science and Technology Development in Jilin Province (No. 20040315) and “985 project” of Jilin University.

References

  1. 1.
    Ballerini G, Bardi U, Bignucolo R, Ceraolo G (2005) Corros Sci 47:2173CrossRefGoogle Scholar
  2. 2.
    Song G, Atrens A, Stjohn D, Nairn J, Li Y (1997) Corros Sci 39:855CrossRefGoogle Scholar
  3. 3.
    Avedesian MM, Baker H (1999) Magnesium and magnesium alloys. ASM International Material Park, USA, p 226Google Scholar
  4. 4.
    Lu YZ, Wang QD, Zeng XQ, Ding WJ, Zhai CQ, Zhu YP (2000) Mater Sci Eng A 278:66CrossRefGoogle Scholar
  5. 5.
    Wang QD, Lu YZ, Zeng XQ, Ding WJ, Zhu YP, Li QH, Lan J (1999) Mater Sci Eng A 271:109CrossRefGoogle Scholar
  6. 6.
    Pettersen G, Westengen H, Hoier R, Lohne O (1996) Mater Sci Eng A 207:115CrossRefGoogle Scholar
  7. 7.
    Moreno IP, Nandy TK, Jones JW, Allison JE, Pollock TM (2003) Scr Mater 48:1029CrossRefGoogle Scholar
  8. 8.
    Lunder O, Nisancioglu K (1993) Progress in the understanding and prevention of corrosion. The Institute of Materials, London, p 1249Google Scholar
  9. 9.
    Nordlien JH, Nisancioglu K, Ono S, Masuko N (1997) J Electrochem Soc 144:461CrossRefGoogle Scholar
  10. 10.
    Song GL, Stjohn DH (2002) J Light Metals 2:1CrossRefGoogle Scholar
  11. 11.
    Wei LY, Dunlop GL (1996) J Alloys Compd 232:264CrossRefGoogle Scholar
  12. 12.
    Song GL, Bowles AL, Stjohn DH (2004) Mater Sci Eng A 366:74CrossRefGoogle Scholar
  13. 13.
    Song GL, Atrens A, Wu XL, Zhang B (1998) Corros Sci 40:1769CrossRefGoogle Scholar
  14. 14.
    Ambat R, Aung NN, Zhou W (2000) Corros Sci 42:1433CrossRefGoogle Scholar
  15. 15.
    Lunder O, Lein JE, Aune TK, Nisancioglu K (1989) Corrosion 45:741CrossRefGoogle Scholar
  16. 16.
    Song GL, Atrens A (1999) Adv Eng Mater 1:11CrossRefGoogle Scholar
  17. 17.
    Song GL, Atrens A, Dargusch M (1999) Corros Sci 41:249CrossRefGoogle Scholar
  18. 18.
    Yao HB, Li Y, Wee ATS, Pan JS, Chai JW (2001) Appl Surf Sci 173:54CrossRefGoogle Scholar
  19. 19.
    Yao HB, Li Y, Wee ATS (2003) Electrochem Acta 48:4197CrossRefGoogle Scholar
  20. 20.
    Rosalbino F, Angemini E, de Negri S, Saccone A, Delfino S (2005) Intermetallics 13:55CrossRefGoogle Scholar
  21. 21.
    Krishnamurthy S, Khobaib M, Robertson E (1988) Mater Sci Eng 99:507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Y. L. Song
    • 1
  • Yao Hui Liu
    • 1
    Email author
  • S. R. Yu
    • 1
  • X. Y. Zhu
    • 1
  • S. H. Wang
    • 1
  1. 1.Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & EngineeringJilin UniversityChangchunPR China

Personalised recommendations