Journal of Materials Science

, Volume 42, Issue 14, pp 5722–5727 | Cite as

Morphology, microstructure, and residual stress in EBPVD erbia coatings

  • Alan F. JankowskiEmail author
  • Cheng K. Saw
  • James L. Ferreira
  • Jennifer S. Harper
  • Jeffrey P. Hayes
  • Bruce A. Pint


The electron-beam physical vapor deposition of erbium-oxide coatings onto sapphire wafers is investigated to evaluate processing effects on the residual stress state and microstructure. The erbium-oxide coatings are found to be in a compressive stress state. The crystallographic texture of the erbium-oxide coating is evaluated using X-ray diffraction along with an assessment of forming the cubic erbia phase as a function of substrate temperature. In addition to the cubic erbia phase, an orthorhombic phase is found at the lower deposition temperatures. A transition is found from a two-phase erbium-oxide coating to a single phase at deposition temperatures above 948 K. The variation in morphology with deposition temperature observed in fracture cross-sections is consistent with features of the classic zone growth models for vapor-deposited oxide coatings. For high-temperature applications, a deposition process temperature above 948 K is seen to produce a stoichiometric, fully dense, and equiaxed-polycrystalline coating of cubic erbia.


Erbia Deposition Temperature Sapphire Substrate Physical Vapor Deposition Orthorhombic Phase 



The research was sponsored by the Office of Fusion Energy Sciences, U.S. Department of Energy and by the US-Japan JUPITER-II collaboration with the MHD coating subtask led by Prof. T. Muroga, NIFS (Natl. Institute for Fusion Science). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.


  1. 1.
    Barleon L, Casal V, Lenhart L (1991) Fusion Eng Design 14:401CrossRefGoogle Scholar
  2. 2.
    Malang S, Borgstedt HU, Farnum EH, Natesan K, Vitkovski IV (1995) Fusion Eng Design 27:570CrossRefGoogle Scholar
  3. 3.
    Park JH, Kassner TF (1996) J Nucl Mater 233–237:476CrossRefGoogle Scholar
  4. 4.
    Mikhelashvili V, Eisenstein G, Edelmann F (2002) Appl Phys Lett 80:2156CrossRefGoogle Scholar
  5. 5.
    Singh MP, Thakur CS, Shalini K, Bhat N, Shivashankar SA (2003) Appl Phys Lett 83:2889CrossRefGoogle Scholar
  6. 6.
    Hubbard KM, Espinoza BF (2000) Thin Solid Films 366:175CrossRefGoogle Scholar
  7. 7.
    Wood BP, Reass WA, Henins I (1996) Surf Coatings Technol 85:70CrossRefGoogle Scholar
  8. 8.
    Walter KC, Nastasi M, Baker NP, Munson CP, Scarborough WK, Scheuer JT, Wood BP, Conrad JR, Sridharan K, Malik S, Bruen RA (1998) Surf Coatings Technol 103–104:205CrossRefGoogle Scholar
  9. 9.
    Koch F, Brill R, Maier H, Levchuk D, Suzuki A, Muroga T, Bolt H (2004) J Nucl Mater 329–333:1403CrossRefGoogle Scholar
  10. 10.
    Pint BA, Tortorelli PF, Jankowski A, Hayes J, Muroga T, Suzuki A, Yeliseyeva OI, Chernov VM (2004) J Nucl Mater 329–333:119CrossRefGoogle Scholar
  11. 11.
    Campbell DS (1970) In: Maissel L, Glang R (eds) Handbook of thin film technology (Ch. 12). McGraw-Hill, New YorkGoogle Scholar
  12. 12.
    Movchan BA, Demchishin AV (1969) Fizika Metall 28:653Google Scholar
  13. 13.
    Bunshah RF, Juntz RS (1973) Met Trans 4:21CrossRefGoogle Scholar
  14. 14.
    Colen M, Bunshah RF (1976) J Vac Sci Technol 13:536CrossRefGoogle Scholar
  15. 15.
    Saiki A (1985) J Ceram Assoc Jpn 93:649CrossRefGoogle Scholar
  16. 16.
    Wenk H-R (1981) Z Kristallogr 154:137Google Scholar
  17. 17.
    Stoney GG (1909) Proc R Soc Lond Ser A 82:172CrossRefGoogle Scholar
  18. 18.
    Brenner A, Senderoff S (1949) J Res Nat Bur Stand 42:105CrossRefGoogle Scholar
  19. 19.
    Hoffman RW (1966) Phys Thin Films 3:211Google Scholar
  20. 20.
    Saul RH (1969) J Appl Phys 40:3273CrossRefGoogle Scholar
  21. 21.
    Olsen GH, Ettenberg M (1977) J Appl Phys 48:2543CrossRefGoogle Scholar
  22. 22.
    Vilms J, Kerps D (1982) J Appl Phys 53:1536CrossRefGoogle Scholar
  23. 23.
    Townsend PH, Barnett DM, Brunner TA (1987) J Appl Phys 62:4438CrossRefGoogle Scholar
  24. 24.
    Henein GE, Wagner WR (1983) J Appl Phys 54:6395CrossRefGoogle Scholar
  25. 25.
    Jankowski A, Bionta F, Gabriele P (1989) J Vac Sci Technol A7:210CrossRefGoogle Scholar
  26. 26.
    Nye JF (1960) Physical properties of crystals. Clarendon, Oxford, p 131Google Scholar
  27. 27.
    Trent HM, Stone DE, Beaubien LA (1982) In: Gray DE (ed) American Institute of Physics handbook (3rd ed). McGraw-Hill, New York, p. 55Google Scholar
  28. 28.
    Huang T, Parrish W, Masciocchi N, Wang P (1990) Adv X-Ray Anal 33:295Google Scholar
  29. 29.
    CRC (1985) In: Weast RC, Astle MJ, Beyer WH (eds) Handbook of chemistry and physics (65th ed). CRC Press, Boca Raton, p F-59Google Scholar
  30. 30.
    Jankowski AF, Hayes JP, Felter TE, Evans C, Nelson AJ (2002) Thin Solid Films 420–421:43CrossRefGoogle Scholar
  31. 31.
    Sawada A, Suzuki A, Maier H, Koch F, Terai T, Muroga T (2005) Fusion Eng Design 75–79:737CrossRefGoogle Scholar
  32. 32.
    Adams RO, Digiallonardo A, Nordin CW (1987) Thin Solid Films 154:101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alan F. Jankowski
    • 1
    Email author
  • Cheng K. Saw
    • 1
  • James L. Ferreira
    • 1
  • Jennifer S. Harper
    • 1
  • Jeffrey P. Hayes
    • 1
  • Bruce A. Pint
    • 2
  1. 1.Materials Science and Technology DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations