Journal of Materials Science

, Volume 42, Issue 12, pp 4441–4450 | Cite as

Experimental study of the transverse mechanical properties of polyamide 6.6 monofilaments

  • Georgios StamoulisEmail author
  • Christiane Wagner-Kocher
  • Marc Renner


In this paper, we analyse experimental results concerning the transverse mechanical properties of PA6.6 monofilaments. Three diameters of such monofilaments (120, 230 and 400 μm) were compressed at seven different speeds, varying from 1 to 5,000 μm/min, until a maximum force of 2,000 N. The results show a high degree of anisotropy: the transverse Young’s modulus is less than one-tenth the value of the longitudinal one. In general, as the speed increases, more energy is needed to compress the monofilament and the curves representing the evolution of the contact width as a function of the force per unit length are in descending order. This happens in the plastic region, as long as the phenomenon is well stabilised, and indicates a viscoelastoplastic behaviour of PA6.6 monofilaments in the transverse direction. Transverse relaxation tests confirmed this behaviour. However, the curves representing the evolution of the diameter as a function of the force per unit length are not always in descending order as the speed increases. These curves also show a change in the optical properties of the compressed monofilament. Scanning Electron Microscope photos of transversely compressed PA6.6 monofilaments revealed that the monofilament seems to fibrillate inside its core.


Force Level Plastic Region Compression Speed Contact Width Linear Force 


  1. 1.
    Hadley DW, Ward IM, Ward J (1965) Proc Roy Soc London A 285:275CrossRefGoogle Scholar
  2. 2.
    Pinnock PR, Ward IM, Wolfe JM (1966) Proc Roy Soc London A 291:267CrossRefGoogle Scholar
  3. 3.
    Phoenix SL, Skelton J (1974) Text Res J 44:934CrossRefGoogle Scholar
  4. 4.
    M’Ewen E (1949) Philos Magazine 454Google Scholar
  5. 5.
    Kotani T, Sweeny J, Ward IM (1994) J Mater Sci 29:5551CrossRefGoogle Scholar
  6. 6.
    Jones MCG, Lara-Curzio E, Kopper A, Martin DC (1997) J Mater Sci 32:2855CrossRefGoogle Scholar
  7. 7.
    Singletary J, Davis H, Ramasubramanian MK, Knoff W, Toney M (2000) J Mater Sci 35:573CrossRefGoogle Scholar
  8. 8.
    Singletary J, Davis H, Song Y, Ramasubramanian MK, Knoff W (2000) J Mater Sci 35:583CrossRefGoogle Scholar
  9. 9.
    Stamoulis G, Wagner-Kocher Ch, Renner M (2005) Exper Tech 29(4):26CrossRefGoogle Scholar
  10. 10.
    Stamoulis G, Wagner-Kocher Ch, Renner M (2003) In: Proceedings of the 14th international conference of composite materials, San Diego (USA), July 2003. ISBN 0-87263-685-2Google Scholar
  11. 11.
    Hearle JWS, Lomas B, Cooke WD (1998) Atlas of fibre fracture and damage to textile, 2nd edn. The Textile Institute, Woohead publishing, pp 44–46CrossRefGoogle Scholar
  12. 12.
    Kwak S-Y, Kim JH, Lee J-C (2001) J Pol Sci Part B: Polym Phys 39:993CrossRefGoogle Scholar
  13. 13.
    Zimmerman J, Kohan MI (2001) J Pol Sci Part A: Polym Chem 39:2565CrossRefGoogle Scholar
  14. 14.
    Kawabata S (1990) J Text Ins 81(4):432CrossRefGoogle Scholar
  15. 15.
    Marcellan A, Colomban P, Bunsell A (2004) J Ram Spect 35:308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Georgios Stamoulis
    • 1
    Email author
  • Christiane Wagner-Kocher
    • 1
  • Marc Renner
    • 1
  1. 1.Ecole Nationale Supérieure des Industries Textiles de Mulhouse, Laboratoire de Physique et Mécanique Textiles – CNRS FRE 2636, Université de Haute AlsaceMulhouseFrance

Personalised recommendations