Journal of Materials Science

, Volume 42, Issue 12, pp 4406–4417 | Cite as

Novel sodium alginate composite membranes prepared by incorporating cobalt(III) complex particles used in pervaporation separation of water–acetic acid mixtures at different temperatures

  • Ravindra S. Veerapur
  • K. B. Gudasi
  • M. Sairam
  • R. V. Shenoy
  • M. Netaji
  • K. V. S. N. Raju
  • B. Sreedhar
  • Tejraj M. AminabhaviEmail author


The present paper is our continuing effort to develop a new type of sodium alginate (NaAlg) composite membrane by incorporating cobalt(III)(3-acetylpyridine-o-aminobenzoylhydrazone) (Co-APABZ) complex as filler particles in different ratios. Membranes were prepared by solution casting followed by solvent evaporation and crosslinked with glutaraldehyde. Pervaporation (PV) performance of the prepared composite membranes was assessed in terms of flux and selectivity and these data were compared with the pristine NaAlg membrane in PV dehydration of water–acetic acid mixtures. Pristine Co-APABZ particles in crystalline form were prepared and characterized by the solid state X-ray diffraction (XRD) technique, while the NaAlg/Co(III)composite membranes were characterized by thermogravimetry (TGA) and dynamic mechanical thermal analyzer (DMTA). X-ray crystal structure of Co-APABZ has shown that the complex formed was crystalline in nature with six lattice water molecules, which are interconnected by hydrogen bonds linking together to form cyclic hexamers that are analogous to cyclohexane, creating water channels for an easy transport of water molecules. TGA indicated no changes in thermal stability of the membranes due to the presence of Co-APABZ in the NaAlg matrix. DMTA confirmed NaAlg crosslinking with glutaraldehyde. Effects of Co-APABZ content, membrane thickness, temperature and feed water compositions on membrane performance were investigated to find an optimum PV performance of the membranes developed. NaAlg composite membranes in the presence of Co-APABZ particles preferentially absorbed water molecules to facilitate diffusion of water through the membranes and thus enhance the selectivity to water. However, the amount of Co-APABZ present in the NaAlg matrix and the degree of membrane swelling has an effect on membrane performance. Selectivity of 174 for water with a flux of 0.123 kg/mh was obtained for 5 wt.% Co-APABZ containing NaAlg matrix, when tested for the feed mixture containing 10 wt % water. The present results are superior to the previously published data based on NaAlg membranes.


Sodium Alginate Dynamic Mechanical Thermal Analysis Composite Membrane Water Channel Pervaporation 



The authors (T.M Aminabhavi, K.B. Gudasi and R.S. Veerapur) thank University Grants Commission (UGC), New Delhi, India (F1-41/2001/CPP-II) for a major financial support to establish Center of Excellence in Polymer Science (CEPS). This work represents a collaborative effort between CEPS, Dharwad and IICT, Hyderabad under the MoU.


  1. 1.
    Gmehling J, Onken U, Arlt W (1981) Vapor–liquid equilibrium data collection, Dechema, Frankfurt/MainGoogle Scholar
  2. 2.
    Shanley A (September 1994) Chem Eng 101(9):34Google Scholar
  3. 3.
    Aminabhavi TM, Toti US, (2003) Design Monomers Polym 6:211CrossRefGoogle Scholar
  4. 4.
    Kurkuri MD, Toti US, Aminabhavi TM (2002) J Appl Polym Sci 86:3642CrossRefGoogle Scholar
  5. 5.
    Aminabhavi TM, Naidu BVK, Sridhar S (2004) J Appl Polym Sci 94:1827CrossRefGoogle Scholar
  6. 6.
    Naidu BVK, Krishna Rao KSV, Aminabhavi TM (2005) J Membr Sci 260:131CrossRefGoogle Scholar
  7. 7.
    Kurkuri MD, Kumbar SG, Aminabhavi TM (2002) J Appl Polym Sci 86:272CrossRefGoogle Scholar
  8. 8.
    Uragami T, Saito M (1989) Sep Sci Technol 24:541CrossRefGoogle Scholar
  9. 9.
    Mochizuki A, Amiya S, Sato Y, Ogawara H, Yamashita S (1990) J Appl Polym Sci 40:385CrossRefGoogle Scholar
  10. 10.
    Yeom CK, Lee KH (1998) J Appl Polym Sci 67:209CrossRefGoogle Scholar
  11. 11.
    Huang RYM, Pal R, Moon GY (1999) J Membr Sci 156:101CrossRefGoogle Scholar
  12. 12.
    Toti US, Kariduraganavar MY, Soppimath KS, Aminabhavi TM (2002) J Appl Polym Sci 83:259CrossRefGoogle Scholar
  13. 13.
    Toti US, Aminabhavi TM (2002) J Appl Polym Sci 85:2014CrossRefGoogle Scholar
  14. 14.
    Moon GY, Pal R, Huang RYM (1999) J Membr Sci 156:17CrossRefGoogle Scholar
  15. 15.
    Huang RYM, Pal R, Moon GY (2000) J Membr Sci 166:275CrossRefGoogle Scholar
  16. 16.
    Wang XN (2000) J Membr Sci 170:71CrossRefGoogle Scholar
  17. 17.
    Toti US, Aminabhavi TM (2004) J Membr Sci 228:199–208CrossRefGoogle Scholar
  18. 18.
    Kurkuri MD, Toti US, Aminabhavi TM (2002) J Appl Polym Sci 86:3642CrossRefGoogle Scholar
  19. 19.
    Yang G, Zhang L, Peng T, Zhong W (2000) J Membr Sci 175:53CrossRefGoogle Scholar
  20. 20.
    Lu SY, Chiu CP, Huang HY (2000) J Membr Sci 176:159CrossRefGoogle Scholar
  21. 21.
    Lee JF, Wang Y (1998) War Sci Tech 38:463CrossRefGoogle Scholar
  22. 22.
    Naidu BVK, Bhat SD, Sairam M, Wali AC, Sawant DP, Halligudi SB, Mallikarjuna NN, Aminabhavi TM (2005) J Appl Polym Sci 96:968CrossRefGoogle Scholar
  23. 23.
    Bhat SD, Naidu BVK, Shanbhag GV, Halligudi SB, Sairam M, Aminabhavi TM (2006) Sep Pur Tech 49:56CrossRefGoogle Scholar
  24. 24.
    Rat M, Desousa RA, Thomas A, Frapart Y, Tuchagues J, Artaud I (2003) Eur J Inorg Chem 64:759CrossRefGoogle Scholar
  25. 25.
    Keene TD, Hursthouse MB, Price DH (2004) Acta Cryst, Sect E60:m381Google Scholar
  26. 26.
    Custelcean R, Afloroaei C, Vlassa M, Polverejan M (2000) Angew Chem 17:39Google Scholar
  27. 27.
    Coleman AW, De Silva E, Nouar F, Nierlich M, Navaza A (2003) Chem Comm:826Google Scholar
  28. 28.
    Ludwig R (2001) Angew Chem Int Ed. 4:1808Google Scholar
  29. 29.
    Crank J (1975) The mathematics of diffusion, Clarenden Press, OxfordGoogle Scholar
  30. 30.
    Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2005) J Membr Sci 262:91CrossRefGoogle Scholar
  31. 31.
    Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2006) J Membr Sci 280:138CrossRefGoogle Scholar
  32. 32.
    Fujita H, Kishimoto A, Matsumoto KM (1960) Trans Faraday Soc 56:424CrossRefGoogle Scholar
  33. 33.
    Ping ZH, Nguyen QT, Clement R, Neel J (1990) J Membr Sci 48:297CrossRefGoogle Scholar
  34. 34.
    Adoor SG, Manjeshwar LS, Naidu BVK, Sairam M, Aminabhavi TM (2006) J Membr Sci 280:594CrossRefGoogle Scholar
  35. 35.
    Naidu BVK, Shetty LC, Aminabhavi TM (2004) J Appl Polym Sci 92:2740CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ravindra S. Veerapur
    • 1
  • K. B. Gudasi
    • 2
  • M. Sairam
    • 1
  • R. V. Shenoy
    • 2
  • M. Netaji
    • 3
  • K. V. S. N. Raju
    • 4
  • B. Sreedhar
    • 5
  • Tejraj M. Aminabhavi
    • 1
    Email author
  1. 1.Membrane Separations DivisionCenter of Excellence in Polymer Science, Karnatak UniversityDharwadIndia
  2. 2.Department of ChemistryKarnatak UniversityDharwadIndia
  3. 3.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
  4. 4.Organic Coatings and Polymers DivisionIndian Institute of Chemical TechnologyHyderabadIndia
  5. 5.Inorganic and Physical Chemistry DivisionIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations