Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4205–4214 | Cite as

Intermetallic Fe x Al y -phases in a steel/Al-alloy fusion weld

  • Leonardo Agudo
  • Dominique Eyidi
  • Christian H. Schmaranzer
  • Enno Arenholz
  • Nasrin Jank
  • Jürgen Bruckner
  • Anke R. Pyzalla
Article

Abstract

The microstructure of joints between an Al-alloy and a zinc coated ferritic steel sheet manufactured by the so-called CMT joining method is investigated. The joint consists of a weld between the Al-alloy and Al 99.8 filler and a brazing of the filler to the zinc coated steel. The morphology, the structure and the defects of the intermetallic phases that developed at the interface between the steel and the Al 99.8 filler are characterised using scanning and transmission electron microscopy. The intermetallic phase seam is only about 2.3 μm thick and consists of trapezoidal nearly equiaxial Fe2Al5 grains surrounded by finger-like remains of the steel and mostly elliptical FeAl3 grains extending into the Al 99.8 filler material. Both the Fe2Al5 and the FeAl3 grains contain crystal defects.

Keywords

Welding Steel Sheet Diffusion Couple Friction Stir Welding Intermetallic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Financial support from the Hochschuljubiläumsstiftung der Stadt Wien (grant ( H-175/2001) is gratefully acknowledged by one of the authors (D Eyidi). Further we wish to thank A Leitner, voestalpine Stahl GmbH and R Rechberger, voestalpine mechatronics GmbH for the preparation of the samples.

References

  1. 1.
    Kattner UR (1990) In: Binary alloy phase diagrams. ASM International, Materials Park, OH, USAGoogle Scholar
  2. 2.
    Iwamoto N, Yoshida M, Tabata S, Takeuchi T, Makino M (1975) Trans JWRI 4:67CrossRefGoogle Scholar
  3. 3.
    Rathod MJ, Kutsuna M (2004) Weld Joining 16SGoogle Scholar
  4. 4.
    Hartwig H (1981) Aluminium 57:615Google Scholar
  5. 5.
    Lee WB, Yeon YM, Kim DU, Jung SB (2003) Mater Sci Technol 19:773CrossRefGoogle Scholar
  6. 6.
    Fukumoto S, Tsubakino H, Okita K, Aritoshi M, Tomita T (2000) Scr Mater 42:807CrossRefGoogle Scholar
  7. 7.
    Kobayashi A, Machida M, Hukaya S, Suzuki M (2003) JSME Int J Ser A 46:452CrossRefGoogle Scholar
  8. 8.
    Bel’chuk GA (1963) Svar Proizvod 11:3Google Scholar
  9. 9.
    Bach FW, Möhwald K, Holländer U, Duda T (2003) DVS-Schriftenreihe 212:231Google Scholar
  10. 10.
    Kreimeyer M, Wagner F, Vollertsen F (2003) In: Propawe R (ed) Proceedings of the 2nd international WLT-conference on lasers in manufacturing, Munich, June 2003. AT-Fachverlag, Stuttgart, p 235Google Scholar
  11. 11.
    Pinto H, Pyzalla A, Hackl H, Bruckner J (2006) Mater Sci Forum 524–525:627Google Scholar
  12. 12.
    Schmaranzer CH (2004) In: Herstellung, Mikrostruktur und Eigenschaften von Stahl-Aluminium Hybridplatinen. Dissertation, TU Vienna, Austria, p 243Google Scholar
  13. 13.
    Bruckner J, Wagner J, Arenholz E (2005) In: Kaufmann H (ed) Proceedings of the 2nd international light weight metals technology conference 2005. LKR-Verlag, Austria, p 275Google Scholar
  14. 14.
    Stadelman PA, Buffat PA (1987) Ultramicroscopy 21:131CrossRefGoogle Scholar
  15. 15.
    Murray JL (1986) In: Massalski TB (ed) Binary alloy phase diagrams. ASM International, Materials Park, OH, p 185Google Scholar
  16. 16.
    Watkins KG, McMahon MA, Steen WM (1997) Mater Sci Eng A 231:55CrossRefGoogle Scholar
  17. 17.
    Da Rocha OFL, Siqueira CA, Garcia A (2002) Mater Res (London) 5:391Google Scholar
  18. 18.
    Lin X, Huang W, Feng J, Li T, Zhou Y (1999) Acta Mater 47:3271CrossRefGoogle Scholar
  19. 19.
    Kubaschewski O (1982) Iron–binary phase diagrams. Springer-Verlag, Berlin, p 5, 185Google Scholar
  20. 20.
    Burkhardt U, Grin Yu, Ellner M (1994) Acta Crystallogr Sect B Struct Sci 50:313CrossRefGoogle Scholar
  21. 21.
    Griger A, Stefaniay V, Turmezey T (1986) Z Metallkunde 77:30Google Scholar
  22. 22.
    Black PJ (1955) Acta Crystallogr 8:43CrossRefGoogle Scholar
  23. 23.
    Gebhardt E, Obrowski W (1953) Z Metallkunde 44:154Google Scholar
  24. 24.
    Heumann T, Dittrich S (1959) Z Metallkunde 50:617Google Scholar
  25. 25.
    Andrews DR (1964) Sheet Met Ind 933Google Scholar
  26. 26.
    Eggeler G, Auer W, Kaesche H (1986) Z Metallkunde 77:239Google Scholar
  27. 27.
    Bouché K, Barbier F, Coulet A (1998) Mater Sci Eng A 249:167CrossRefGoogle Scholar
  28. 28.
    Bouayad A, Gerometta Ch, Belkebir A, Ambari A (2003) Mater Sci Eng A 363:53CrossRefGoogle Scholar
  29. 29.
    Marder AR (2000) Prog Mater Sci 45:191CrossRefGoogle Scholar
  30. 30.
    Walser RM, Bené RW (1982) Appl Phys Lett 41:529CrossRefGoogle Scholar
  31. 31.
    Pretorius R, Vredenberg AM, Saris FW, de Reus R (1991) J Appl Phys 70:3636CrossRefGoogle Scholar
  32. 32.
    Theron CC, Ndwandwe OM, Lombaard JC, Pretorius R (1996) Mater Chem Phys 46:238CrossRefGoogle Scholar
  33. 33.
    Bouché K (1995) Etude Thermocinétique de la Dissolution de Métaux Solides (Fer et Nickel) Dans L’Al Liquide. PhD thesis, Universite de Provence, p 194Google Scholar
  34. 34.
    Richards RW, Jones RD, Clements PD, Clarke H (1994) Int Mater Rev 39:191Google Scholar
  35. 35.
    Kwon SC, Lee JY (1981) Can Metall Q 20:154Google Scholar
  36. 36.
    Guttmann M (1994) Mater Sci Forum 155–156:527CrossRefGoogle Scholar
  37. 37.
    Gösele U, Tu KN, Thompson RD (1982) J Appl Phys 53:8759CrossRefGoogle Scholar
  38. 38.
    Eggeler G, Vogel H, Friedrich J, Kaesche H (1985) Pract Metallogr 22:163Google Scholar
  39. 39.
    Ryabov VR, Duplyak VD (1965) Svar Proizvod 2:42Google Scholar
  40. 40.
    Ahravci CA, Pekgüleryüz MÖ (1998) Calphad 22:147CrossRefGoogle Scholar
  41. 41.
    Triverdi R, Park JS (2002) J Cryst Growth 235:572CrossRefGoogle Scholar
  42. 42.
    Bluni ST, Notis MR, Marder AR (1995) Acta Metall Mater 43:1775CrossRefGoogle Scholar
  43. 43.
    Kato T, Nunome K, Kaneko K, Saka H (2000) Acta Mater 48:2257CrossRefGoogle Scholar
  44. 44.
    Tang NY (2000) J Phase Equilib 21:70CrossRefGoogle Scholar
  45. 45.
    Perrot P, Tissier JC, Dauphin JY (1992) Z Metallkunde 83:786Google Scholar
  46. 46.
    Ceylan M, Akoy I, Kuzucu V, Balo S (1997) J Mater Process Technol 65:41CrossRefGoogle Scholar
  47. 47.
    Lin X, Huang W, Feng J, Li T, Zhou Y (1999) Acta Mater 47:3271CrossRefGoogle Scholar
  48. 48.
    Feng J, Huang WD, Lin X, Pan QY, Li T, Zhou YH (1999) J Cryst Growth 197:393CrossRefGoogle Scholar
  49. 49.
    Zhu YH, Man HC, Lee WB (2003) J Mater Process Technol 139:296CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Leonardo Agudo
    • 1
    • 2
  • Dominique Eyidi
    • 3
    • 4
  • Christian H. Schmaranzer
    • 5
  • Enno Arenholz
    • 5
  • Nasrin Jank
    • 1
    • 6
  • Jürgen Bruckner
    • 6
  • Anke R. Pyzalla
    • 1
    • 2
  1. 1.TU Wien, Institute of Material Science and TechnologyViennaAustria
  2. 2.Max-Planck-Institute for Iron Research GmbHDüsseldorfGermany
  3. 3.TU Wien, University Service for Transmission Electron MicroscopyViennaAustria
  4. 4.Laboratoire de Métallurgie Physique UMR 6630 CNRS–Université de PoitiersChasseneuil Futuroscope CedexFrance
  5. 5.Voestalpine Stahl GmbHLinzAustria
  6. 6.Fronius International, Sparte SchweißtechnikWelsAustria

Personalised recommendations