Journal of Materials Science

, Volume 42, Issue 14, pp 5785–5790 | Cite as

Synthesis and characterization of thermoplastic polyurethane/montmorillonite nanocomposites produced by reactive extrusion

  • Yibing Cai
  • Yuan HuEmail author
  • Lei Song
  • Lei Liu
  • Zhengzhou Wang
  • Zuyao Chen
  • Weicheng Fan


The novel polyurethane/montmorillonite (PU/MMT) nanocomposites based on poly (propylene oxide) glycol (POP), 4,4′-diphenymethylate diisocyanate (MDI), 1,4-butanediol (1,4-BD) and MMT has been synthesized using a one-step direct polymerization-intercalation technique by twin-screw extruder. Its structure and thermal properties are characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and High-resolution electron microscopy (HREM), Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetry analysis (TGA), respectively. The results of XRD and HREM analyses show that the silicate layer is well dispersed in PU matrix and this mesostructure can be considered as a delaminated nanocomposites. The TGA analysis indicates that the thermal stability properties of the PU/MMT nanocomposites are increased slightly compared with the pristine PU, due to the increase of the char residue. The mechanical and flammability performances are examined by electronic Universal Tester and Cone calorimetry, respectively. The layered silicate, which acts as a high aspect ratio reinforcement, enhances tensile strength of the PU. Specifically, there is a 25% increase in the tensile strength of PU nanocomposites containing 4 wt.% MMT compared with that of pristine PU. However, the elongation at break of PU/MMT nanocomposites is lower than that of pristine PU. The loading of MMT leads to the remarkably decrease of heat release rate (HRR), contributing to the improvement of flammability performance.


Flame Retardant Heat Release Rate Silicate Clay Layered Silicate Cone Calorimeter 



The work was financially supported by the National Natural Science Foundation of China (No.50476026), Specialized Research Fund for the Doctoral Program of Higher Education (20040358056) and Program for New Century Excellent Talents in University.


  1. 1.
    Mishra JK, Kim Il, Ha C-S (2003) Macromol Rapid Commun 24:671CrossRefGoogle Scholar
  2. 2.
    Tang Y, Hu Y, Wang S (2002) Polym Degrad Stab 78:555CrossRefGoogle Scholar
  3. 3.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  4. 4.
    Alexandre M, Dubois P (2000) Mater Sci Eng 28:1CrossRefGoogle Scholar
  5. 5.
    Carrado KA (2000) J Appl Clay Sci 17:1CrossRefGoogle Scholar
  6. 6.
    LeBaron PC, Wang Z, Pinnavaia T (1999) J Appl Clay Sci 15:11CrossRefGoogle Scholar
  7. 7.
    Akelah A, Kelly P, Qutubuddin S, Moet A (1994) Clay Miner 29:169CrossRefGoogle Scholar
  8. 8.
    Hu Y, Song L, Xu JY, Yang L (2001) Colloid Polym Sci 279:819CrossRefGoogle Scholar
  9. 9.
    Penczek P, Frisch KC, Szczepaniak B, Rudnik E (1993) J Polym Sci Polym Chem 31:1211CrossRefGoogle Scholar
  10. 10.
    (a) Dearlove TJ et al. J Polym Sci 21 (1977) 1499; (b) Tang W, Frries RJ, Macknight WJ, Eisenbach CD, Macromolecules 55 (1994) 153Google Scholar
  11. 11.
    Zhang X, Xu R, Wu Z (2003) Polym Int 52:790CrossRefGoogle Scholar
  12. 12.
    Chen TK, Tien YI, Wei KH (2000) Polym 41:1345CrossRefGoogle Scholar
  13. 13.
    Chen TK, Tien YI, Wei KH (1999) J Polym Sci A Polym Chem 37:2225CrossRefGoogle Scholar
  14. 14.
    Tien YI, Wei KH (2001) Polym 42:3213CrossRefGoogle Scholar
  15. 15.
    Tortora M, Gorrasi G, Vittoria V (2002) Polym 43:6147CrossRefGoogle Scholar
  16. 16.
    Song L, Hu Y (2003) Int J Polym Anal Charact 8:317CrossRefGoogle Scholar
  17. 17.
    Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Gannelis EP (2000) Chem Mater 12:1866CrossRefGoogle Scholar
  18. 18.
    Gilman JW, Kashivagi TCL, Gannelis EP, Manias E, Lomakin S, Lichtehan JD et al (1998) In: Le Bras M, Caniino G, Bourbigot S, Delobel R (eds), Fire retardancy of polymers. The Royal Society of Chemistry, CambridgeGoogle Scholar
  19. 19.
    Schartel B, Bartholmai M, Knoll U (2005) Polym Degrad Stab 88:540CrossRefGoogle Scholar
  20. 20.
    Braun U, Schartel B (2004) Macromol Chem Phys 205:2185CrossRefGoogle Scholar
  21. 21.
    Schartel B, Braun U, Schwarz U, Reinemann S (2003) Polym 44:6241CrossRefGoogle Scholar
  22. 22.
    Schartel B, Braun U (2005) J Fire Sci 23:5CrossRefGoogle Scholar
  23. 23.
    Gilman JW (1999) Appl Clay Sci 15:31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yibing Cai
    • 1
  • Yuan Hu
    • 1
    Email author
  • Lei Song
    • 1
  • Lei Liu
    • 1
  • Zhengzhou Wang
    • 1
  • Zuyao Chen
    • 2
  • Weicheng Fan
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations