Journal of Materials Science

, Volume 42, Issue 12, pp 4298–4307 | Cite as

Hardness and tensile strength of multifilamentary metal–matrix composite superconductors for the Large Hadron Collider (LHC)

  • Christian ScheuerleinEmail author
  • Thierry Boutboul
  • Daniel Leroy
  • Luc Oberli
  • Birgit Rehmer


Conventional indentation hardness measurements to obtain load independent Vickers hardness values for the different phases in multifilamentary superconducting (SC) wires are described. The concept of composite hardness is validated for a binary metal–matrix metal–filament Nb–Ti/Cu composite wire. The tensile materials properties of the individual wire components are estimated from their indentation hardness. The potential and limitations of this approach are critically discussed, based on a comparison with ensile test results obtained for wires and extracted Nb–Ti filaments.


Large Hadron Collider Vickers Hardness Indentation Hardness Indent Load Wire Sample 



We are grateful to L. Thilly from LMP Poitiers for helpful discussions and to M. Bistritz, G. Kalinka, M. Finn and S. Glaubitz from the BAM for tensile testing of single Nb–Ti filaments and Nb–Ti composite wire samples.


  1. 1.
    Adam JD, Boutboul T, Cavallari G, Charifoulline Z, Denarie CH, Le Naour S, Leroy DF, Oberli LR, Richter D, Verweij AP, Wolf R, (2002) IEEE Trans Appl Supercond 12(1):1056CrossRefGoogle Scholar
  2. 2.
    LHC Design Report Vol.1, The LHC Main Ring. In Brüning O, Collier P, Lebrun P, Myers S, Ostojic R, Poole J, Proudlock P (eds) CERN-2004-003, (2004)Google Scholar
  3. 3.
    Tabor D (1970) Rev Phys Technol 1:145CrossRefGoogle Scholar
  4. 4.
    Marsh DM (1963) Proc Roy Soc A 279:420Google Scholar
  5. 5.
    Collings EW (1986) Applied superconductivity, metallurgy, and physics of titanium alloys, Vol 1. Plenum Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Pyon T, Warnes WH, Siddall M (1993) IEEE Trans Appl Supercond 3(1):1018CrossRefGoogle Scholar
  7. 7.
    Lee P, Larbalestier D (2003) Wire J Int 36(2):61–66Google Scholar
  8. 8.
    Schumann H, Oettel H (2004) Metallografie 14th edn. Willey-VCH, WeinheimGoogle Scholar
  9. 9.
    International standard, DIN EN 61788-6(2001-07), “Room temperature tensile test of Cu/Nb–Ti composite superconductors”, (2001)Google Scholar
  10. 10.
    Osamura K, Nyilas A, Shimada M, Moriai H, Hojo M, Fuse T, Sugano M (1999) Definition of mechanical properties assessed by room temperature tensile test for the Cu/Nb–Ti composite wires. In: Proceeding of the 11th International Symposium on Superconductivity, Fukuoka, (1999), 1515Google Scholar
  11. 11.
    “Microhardness Testing”, in ASM handbook Vol. 8, “Mechanical Testing”, (1985)Google Scholar
  12. 12.
    Koch CC, Easton DS (1977) A review of mechanical behaviour and stress effects in hard superconductors. Cryogenics 17:391CrossRefGoogle Scholar
  13. 13.
    Iwasaki N, Hojo M, Ochiai S, Ono M, Sakai S, Watanabe K (1997) J Jpn Inst Metals 61(9):792–800CrossRefGoogle Scholar
  14. 14.
    Nix WD, Gao H (1998) J Mech Phys Solids 46(3):411CrossRefGoogle Scholar
  15. 15.
    Liu Y, Ngan AHW (2001) Scripta Mater 44:237CrossRefGoogle Scholar
  16. 16.
    Thilly L, Renault PO, Vidal V, Lecouturier F, Van Petegem S, Stuhr U, Van Swygenhoven H (2006) Appl Phys Lett 88Google Scholar
  17. 17.
    Thilly L, Lecouturier F, von Stebut J (2002) Acta Materialia 50:5049CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Parrell JA, Lee PJ, Larbalestier DC (1993) IEEE Trans Appl Supercon 3(1):734CrossRefGoogle Scholar
  20. 20.
    Guo Z, Warnes WH (1993) IEEE Trans Appl Supercond 3(1):1022CrossRefGoogle Scholar
  21. 21.
    Scheuerlein C, Rehmer B (2005) Tensile properties of a non-reacted internal tin Nb3Sn composite wire calculated from the Vickers hardness of its individual components according to the rule of mixtures. CERN, AT-MAS technical note 2005-08, EDMS 673338Google Scholar
  22. 22.
    Agnew SR, Weertman JR (1998) Mater Sci Eng A242:174CrossRefGoogle Scholar
  23. 23.
    Ledbetter HM, Kim SA (1988) Mater Sci Eng A 101:87Google Scholar
  24. 24.
    Devred A, et al. (2005) IEEE Trans Appl Supercon 15(2):1106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Christian Scheuerlein
    • 1
    Email author
  • Thierry Boutboul
    • 1
  • Daniel Leroy
    • 1
  • Luc Oberli
    • 1
  • Birgit Rehmer
    • 2
  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland
  2. 2.Bundesanstalt für Materialforschung und –prüfung (BAM)BerlinGermany

Personalised recommendations