Journal of Materials Science

, Volume 42, Issue 14, pp 5641–5646 | Cite as

Studies on the preparation and structure of polyacrylamide/α-zirconium phosphate nanocomposites

  • Rui Zhang
  • Yuan HuEmail author
  • Baoguang Li
  • Zuyao Chen
  • Weicheng Fan


In this paper, a novel polyacrylamide(PAM)/α-zirconium phosphate(α-ZrP) nanocomposite was successfully synthesized by exfoliation-adsorption and in-situ intercalative polymerization. The microstructure of PAM/α-ZrP nanocomposites was confirmed by X-ray diffraction measurement, transmission electron microscopy (TEM), high resolution electron microscopy (HRTEM). The results suggested that the α-ZrP lamellae were dispersed well in PAM matrix, which indicated the formation of the exfoliated nanocomposites in the low inorganic loading of α-ZrP (≤5 wt%). With the increase of the inorganic loadings, the intercalated structure of PAM/α-ZrP nanocomposites was dominant with the d-spacings of about 1.50–1.58 nm corresponding to the inorganic loadings in the range of 10–20 wt%. Moreover, besides the electrostatic adsorption, it was also found that there may be some weak effect such as hydrogen bonding or protonation between the host and guest investigated using fourier transform infrared spectroscopy (FT-IR) and thermogravimetric (TG )analysis, which resulted in the enhancement of the thermal properties on the decomposition process of PAM/α-ZrP nanocomposites by the retardant effect of the exfoliated or intercalated α-ZrP nanometer lamellae.


High Resolution Transmission Electronic Microscopy High Resolution Transmission Electronic Microscopy Interlayer Distance High Resolution Transmission Electronic Microscopy Image Electrostatic Adsorption 



The work was financially supported by the China NKBRSF project (No.2001CB409600), the National Natural Science Foundation of China (No.50323005) and (No.50476026).


  1. 1.
    Alexandre M, Dubois P (2000) Mater Sci and Eng 28:1CrossRefGoogle Scholar
  2. 2.
    Lebaron PC, Wang Z, Pinnavaia TJ (1999) Appl clay sci 15:11CrossRefGoogle Scholar
  3. 3.
    Albrecht M, Ehrles S, Muhlebach A (2003) Macromol Rapid Commun 24:382CrossRefGoogle Scholar
  4. 4.
    Kong QH, Hu Y, Lu HD, Chen ZY, Fan WC (2005) J Mater Sci 40:4505CrossRefGoogle Scholar
  5. 5.
    Ding Y, Jones DJ, Maireles-Torres P, Roziere J (1995) Chem Mater 7:562CrossRefGoogle Scholar
  6. 6.
    Sue HJ, Gam KT (2004) Chem Mater 16:242CrossRefGoogle Scholar
  7. 7.
    Sue HJ, Gam KT, Bestaoui N, Clearfield A, Mioyamoto M, Miyatake N (2004) Acta Materialia 52:2239CrossRefGoogle Scholar
  8. 8.
    Clearfield A, Stynas JA (1964) J Inorg Nucl Chem 26:117CrossRefGoogle Scholar
  9. 9.
    Maclachian DJ, Morgan RK (1992) J Phys Chem 96:3458CrossRefGoogle Scholar
  10. 10.
    Nunes LM, Airldi C (1999) Chem Mater 11:2069CrossRefGoogle Scholar
  11. 11.
    Kumar CV, Chaudhari A (2000) J Am Chem Soc 122:830CrossRefGoogle Scholar
  12. 12.
    Chao KJ, Chang TC, Ho SY (1993) J Mater Chem. 3:427Google Scholar
  13. 13.
    Kumar CV, Chaudhari A (2001) Chem Mater 13:238CrossRefGoogle Scholar
  14. 14.
    Jin W, Brennan JD (2002) Analytica Chimica Acta 461:1CrossRefGoogle Scholar
  15. 15.
    Okamoto M, Morita S, Kim YH, Kotaka T, Tateyama H (2001) Polymer 42:1201CrossRefGoogle Scholar
  16. 16.
    Decher G, Lehr B, Lowach K, Lvov Y, Schmitt J (1994) Biosensors Bioelectronics 9:677CrossRefGoogle Scholar
  17. 17.
    Cheung JH, Fou AF, Rubner MF (1994) Thin Solid Films 244:985CrossRefGoogle Scholar
  18. 18.
    Laschewsky A, Mayer B, Wischerhoff E, Arys X, Bertrand P, Jonas A, Delcorte A, (1996) Thin Solid Film 284–285:334CrossRefGoogle Scholar
  19. 19.
    Hao JC, Zheng LQ, Li GZ, Wang HQ, Du ZW (1996) Polymer 37:3117CrossRefGoogle Scholar
  20. 20.
    Jose L, Pillai VNR (1996) Eur Polym J 32:1431CrossRefGoogle Scholar
  21. 21.
    Churchman GJ (2002) Appl Clay Sci 21:177CrossRefGoogle Scholar
  22. 22.
    Kim SR, Yuk SH, Jhon M (1997) Eur Polym J 33:1009CrossRefGoogle Scholar
  23. 23.
    Yeh JM, Liou SJ, Y.W.Chang (2004) J App Polym Sci 91:3489CrossRefGoogle Scholar
  24. 24.
    Xu JY,Hu Y, Song L, Wang QA, Fan WC (2001) Res Bull 36:1833CrossRefGoogle Scholar
  25. 25.
    Zhang R, Hu Y, Song L, Zhu YR, Fan WC, Chen ZY (2001) Chinese J Nonferr Metals 11:895Google Scholar
  26. 26.
    Xu JS, Tong Y, Zhang H, Z Gao (1997) Chem J Chinese Universities 18:88Google Scholar
  27. 27.
    Espina A, Menéndez F, Jaimez E, Khainakov SA, Trobajo C, García JR (1998) Mater Res Bull 33:763CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rui Zhang
    • 1
  • Yuan Hu
    • 1
    Email author
  • Baoguang Li
    • 2
  • Zuyao Chen
    • 2
  • Weicheng Fan
    • 1
  1. 1.State Key Lab of Fire ScienceUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations