Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7785–7797 | Cite as

Diffusion reactions at Al–MgAl2O4 interfaces—and the effect of applied electric fields

  • Y. Yu
  • J. Mark
  • F. Ernst
  • T. Wagner
  • R. Raj
Article

Abstract

Diffusion reactions between MgAl2O4 (spinel) single-crystal substrates and epitaxial Al layers were studied by transmission electron microscopy (TEM) imaging and analysis. The specimens were annealed for 10 and 20 h at 893 K in ultra-high vacuum. In addition to plain annealing, we annealed while applying electric fields across the MgAl2O4, either oriented in the direction from the Al to the MgAl2O4 or opposite. TEM revealed that plain annealing enables a diffusion reaction during which the MgAl2O4 region adjacent to the interface becomes depleted of Mg and enriched in Al. An electric field oriented in the direction from Al to MgAl2O4 accelerates the reaction, while a field in the opposite direction retards it. The observations agree with an ion exchange mechanism proposed earlier, implying transport of Mg into the metal. However, Mg transport into the opposite direction also contributes to the reaction. The experimental observations demonstrate that annealing in electric fields can effectively control interface microstructures and properties.

Keywords

Applied Electric Field Reaction Layer MgAl2O4 Diffusion Reaction Oxide Interface 

Notes

Acknowledgments

We acknowledge the National Science Foundation for supporting this work under contract numbers DMR-0208008, DMR-0432196, and DMR-0114134.

References

  1. 1.
    Raj R, Saha A, An L, Hasselman DPH, Ernst F (2002) Acta Mater 50:1165CrossRefGoogle Scholar
  2. 2.
    Sickafus K, Wills J (1999) J Am Ceram Soc 82:3279CrossRefGoogle Scholar
  3. 3.
    Kröger F, Vink H (1956) Solid state physics. Academic Press Inc., San Diege, CA, pp 307–435Google Scholar
  4. 4.
    Rühle M, Heuer AH, Evans AG, Ashby MF (eds) (1992) In Proceedings of an international symposium on metal–ceramic interfaces. Acta Metall, vol 40Google Scholar
  5. 5.
    Rühle M, Evans AG, Ashby MF, Hirth JP (eds) (1990) Metal-ceramic interfaces. Acta-scripta metallurgica proceedings series. Pergamon Press, OxfordGoogle Scholar
  6. 6.
    Rühle M, Baluffi RW, Fischmeister HF, Sass SL (eds) (1985) In Proceedings of the international conference on the structure and properties of internal interfaces. J de Phys C4, vol 46Google Scholar
  7. 7.
    Ernst F (1995) Mater Sci Eng R14:97CrossRefGoogle Scholar
  8. 8.
    Howe JM (1993) Int Mat Rev 38:233CrossRefGoogle Scholar
  9. 9.
    Howe JM (1993) Int Mater Rev 38:257CrossRefGoogle Scholar
  10. 10.
    Stoneham AM, Tasker PW (1988) J Phys C5 49:99CrossRefGoogle Scholar
  11. 11.
    Stoneham AM, Tasker PW (1987) Philos Mag B 55:237sCrossRefGoogle Scholar
  12. 12.
    Stoneham AM, Tasker PW (1986) In Pask JA and Evans AG (eds) Ceramic microstructures ’86, Materials science research, vol 21. Plenum Press, New York, pp 155–165Google Scholar
  13. 13.
    Stoneham AM, Tasker PW (1985) J Phys C 18:L543CrossRefGoogle Scholar
  14. 14.
    Finnis MW (1991) Surface Sci 241:61CrossRefGoogle Scholar
  15. 15.
    Finnis MW (1992) Acta Metall Mater 40:S25CrossRefGoogle Scholar
  16. 16.
    Duffy D, Harding J, Stoneham A (1993) Phil Mag A 67:865CrossRefGoogle Scholar
  17. 17.
    Duffy DM, Harding JH, Stoneham AM (1992) Acta Metall Mater 40:S11CrossRefGoogle Scholar
  18. 18.
    Purton J, Parker SC, Bullett DW (1997) J Phys: Condens Matter 9:5709Google Scholar
  19. 19.
    Schweinfest R, Köstlmeier S, Ernst F, ElsÄsser C, Wagner T, Finnis MW (2001) Philos Magazine A (Physics of Condensed Matter: Structure, Defects and Mechanical Properties) 81:927Google Scholar
  20. 20.
    Schweinfest R, Ernst F, Wagner T, Rühle M (1999) J Microscopy 194:142CrossRefGoogle Scholar
  21. 21.
    Fu Q, Wagner T (2005) Surface Sci 574:L29CrossRefGoogle Scholar
  22. 22.
    Fu Q, Wagner T (2005) J Phys Chem 109:11697CrossRefGoogle Scholar
  23. 23.
    Foxon CT (2003) J Crystal Growth 251:1CrossRefGoogle Scholar
  24. 24.
    Schweinfest R, Ernst F, Wagner T, Rühle M (1999) J Microscopy 194:142CrossRefGoogle Scholar
  25. 25.
    Schweinfest R (1998) Ph.D. thesis, Universität StuttgartGoogle Scholar
  26. 26.
    Reimer L (1995) Energy-filtering transmission electron microscopy, Springer series in optical sciences, vol 71. Springer, BerlinCrossRefGoogle Scholar
  27. 27.
    Yu Y (2005) PhD thesis, Case Western Reserve UniversityGoogle Scholar
  28. 28.
    Egerton R (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  29. 29.
    Reed S (1982) Ultramicroscopy 7:405CrossRefGoogle Scholar
  30. 30.
    Chiang Y-M, Kingery W (1990) J Am Ceram Soc 73:1153CrossRefGoogle Scholar
  31. 31.
    Taylor JR, Dinsdale AT, Hillert M, Selleby M (1992) Calphad: Comput Coupling Phase Diagrams Thermochem 16:173CrossRefGoogle Scholar
  32. 32.
    Wanabe M, Aswath PB (1996) Acta Mater 45:4067Google Scholar
  33. 33.
    Rothman S, Peterson N, Nowicki L, Robinson L (1974) Phys Status Solidi B 63:K29CrossRefGoogle Scholar
  34. 34.
    Hirano K, Fujikawa S (1978) J Nuclear Mater 69/70:564CrossRefGoogle Scholar
  35. 35.
    Schmalzried H (1995) Chemical kinetics of solids. VCH Verlagsgesellschaft mbH, WeinheimCrossRefGoogle Scholar
  36. 36.
    Schmalzried H (1990) J Chem Soc: Faraday Trans 86:1273Google Scholar
  37. 37.
    Whitney W, Stubican V (1970) Am Ceram Soc Bull 49:388Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Max-Planck-Institut für MetallforschungStuttgartGermany
  3. 3.Engineering CenterUniversity of Colorado BoulderColoradoUSA

Personalised recommendations