Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6501–6504 | Cite as

Effect of LTI content on impact fracture property of PLA/PCL/LTI polymer blends

  • Tetsuo Takayama
  • Mitsugu Todo
  • Hideto Tsuji
  • Kazuo Arakawa
Letter

Biodegradable thermoplastic, poly (lactic acid) (PLA), has been used in a variety of industrial fields including automotive, computer, food and electric appliances. PLA has also been utilized as a bioabsorbable material in medical fields such as orthopedics and oral surgery [1, 2]. Fracture properties and behavior of PLA have been characterized, and it was found that multiple-crazes are formed in crack-tip region prior to crack initiation, similarly to the fracture behavior of brittle polymers such as PP and PS [3, 4, 5, 6, 7]. Improvement of toughness of such brittle polymers can generally be achieved by blending a ductile secondary phase to the base polymer. Recently, poly(ε-caprolacton) (PCL), a ductile biodegradable thermoplastics, has been chosen as a blending partner for PLA [8, 9, 10, 11, 12, 13, 14], and the fracture toughness of PLA/PCL blend was found to be effectively greater than that of neat PLA [9]. It was, however, also found that the immiscibility between PLA and PCL...

Keywords

Fracture Toughness Crack Initiation Impact Fracture Drop Weight Impact Brittle Polymer 

References

  1. 1.
    Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276/277:1CrossRefGoogle Scholar
  2. 2.
    Higashi S, Tamamoto T, Nakamura T, Ikeda Y, Hyon S-H, Jamshidi K (1986) Biomaterials 7:183CrossRefGoogle Scholar
  3. 3.
    Todo M, Shinohara N, Arakawa K (2002) J Mater Sci Lett 21:1203CrossRefGoogle Scholar
  4. 4.
    Todo M, Shinohara N, Arakawa K, Tsuji H (2003) Kobunshi Ronbunshu 60:644CrossRefGoogle Scholar
  5. 5.
    Park SD, Todo M, Arakawa K (2004) J Mater Sci 39:1113CrossRefGoogle Scholar
  6. 6.
    Park SD, Todo M, Arakawa K (2004) Key Eng Mater 261–263:105CrossRefGoogle Scholar
  7. 7.
    Park SD, Todo M, Arakawa K (2005) J Mater Sci 40:1055CrossRefGoogle Scholar
  8. 8.
    Tsuji H, Ikada Y (1996) J Appl Polym Sci 60:2367CrossRefGoogle Scholar
  9. 9.
    Todo M, Arakawa K, Tsuji H, Takenoshita Y Proc the SEM X, Paper No 55 (CD-ROM)Google Scholar
  10. 10.
    Wang L, MA W, Gross RA, Mccarthy SP (1998) Polym Deg Stab 59:161CrossRefGoogle Scholar
  11. 11.
    Hiljanen M, Varpomaa P, Spälä J, Törmälä P (1996) Macromol Chem Phys 197:1503CrossRefGoogle Scholar
  12. 12.
    Meredith JC, Amis EJ (2000) Macromol Chem Phys 201:733CrossRefGoogle Scholar
  13. 13.
    Tsuji H, Yamada T, Suzuki M, Itsuno S (2003) Polym Int 52:269CrossRefGoogle Scholar
  14. 14.
    Dell’Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A (2001) Polymer 42:7831CrossRefGoogle Scholar
  15. 15.
    Takayama T, Todo M, Arakawa K, Tsuji H (2006) Trans Jpn Soc Mech Eng 72: 714CrossRefGoogle Scholar
  16. 16.
    Takayama T, Todo M (2006) J Mater Sci 41:4989CrossRefGoogle Scholar
  17. 17.
    Todo M, Nakamura T, Takahashi K (2000) J Comp Mater 34:630CrossRefGoogle Scholar
  18. 18.
    Todo M, Nakamura T, Takahashi K (1999) J Rein Plas Comp 18:1415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tetsuo Takayama
    • 1
  • Mitsugu Todo
    • 2
  • Hideto Tsuji
    • 3
  • Kazuo Arakawa
    • 2
  1. 1.Interdisciprinary Graduate School of Engineering ScienceKyushu UniversityKasuga, FukuokaJapan
  2. 2.Research Institute for Applied MechanicsKyushu UniversityKasuga, FukuokaJapan
  3. 3.Department of Ecological ScienceToyohashi University of TechnologyToyohashi, AichiJapan

Personalised recommendations