Journal of Materials Science

, Volume 42, Issue 5, pp 1403–1414 | Cite as

Structural nanocrystalline materials: an overview

Nano May 2006

Abstract

This paper presents a brief overview of the field of structural nanocrystalline materials. These are materials in either bulk, coating, or thin film form whose function is for structural applications. The major processing methods for production of bulk nanocrystalline materials are reviewed. These methods include inert gas condensation, chemical reaction methods, electrodeposition, mechanical attrition, and severe plastic deformation. The stability of the nanocrystalline microstructure is discussed in terms of strategies for retardation of grain growth. Selected mechanical properties of nanocrystalline materials are described; specifically strength and ductility. Corrosion resistance is briefly addressed. Examples of present or potential applications for structural nanocrystalline materials are given.

Notes

Acknowledgements

The author’s research related to the topics of the paper is supported by the Department of Energy under grant number DE-FG02-02ER46003 and the National Science Foundation under grant number DMR-0201474. The author would like to thank Dr. Stan Veprek for allowing the use of his description of nanocrystalline coatings and thin films as given in the Introduction section.

References

  1. 1.
    Jilek M, Cselle T, Holubar P, Morstein M, Veprek-Heijman MGJ, Veprek S (2004) Plasma Chem. Plasma Processing 24:493Google Scholar
  2. 2.
    Munz W-D, Lewis DB, Hovsepian PEh, Schonjahn C, Ehiasarian A, Smith IJ (2001) Surf Eng 17:15CrossRefGoogle Scholar
  3. 3.
    Munz W-D (2003) MRS Bull 28:173Google Scholar
  4. 4.
    Voevodin AA, Schneider JM, Rebholz C, Matthews A (1996) Tribol Int 29:559CrossRefGoogle Scholar
  5. 5.
    Voevodin AA, Capano MA, Safriet AJ, Donley MS, Zabinski JS (1996) Appl Phys Lett 69:188CrossRefGoogle Scholar
  6. 6.
    Voevodin AA, Prasad SV, Zabinski JS (1997) J Appl Phys 82:855CrossRefGoogle Scholar
  7. 7.
    Voevodin AA, Walck SD, Zabinski JS (1997) Wear 203–204:516Google Scholar
  8. 8.
    Voevodin AA, Zabinski JS (1998) Diamond Related Mat 7:463CrossRefGoogle Scholar
  9. 9.
    Voevodin AA Zabinski JS (2000) Thin Solid Films 370:223CrossRefGoogle Scholar
  10. 10.
    Voevodin AA, Fitz TA, Hu JJ, Zabinski JS (2002) J Vac Sci Technol A 20:1434Google Scholar
  11. 11.
    Mehl RF, Cahn RW (1983) In: Cahn RW, Haasen P (eds) Physical Metallurgy, 3rd edn. North Holland, Amsterdam, p 1Google Scholar
  12. 12.
    Guinier A (1938) Nature 142:569Google Scholar
  13. 13.
    Preston GD (1938) Nature 142:570Google Scholar
  14. 14.
    Porter DA, Easterling KE (1983) In: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham, UK, p 291Google Scholar
  15. 15.
    Maziasz PJ, Pollard M (2003) Adv Mat Processes 161:57Google Scholar
  16. 16.
    Ehmann KF, Devor RE, Kapoor SG, and Ni J (2000) Micro/Meso-Mechanical Manufacturing M4, NSF Workshop, May 16–17Google Scholar
  17. 17.
    Siegel RW (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Processing of metals and alloys. Materials science and technology – a comprehensive treatment, vol 15. VCH, Weinheim, Germany, p 583Google Scholar
  18. 18.
    Chow G-M, Kurihara LK (2002) In: Koch CC (ed) Nanostructured materials: processing, properties, and applications. William Andrew Publ., Norwich, NY, p 3Google Scholar
  19. 19.
    Mccandlish LE, Kear BH, Kim BK (1992) NanoStructured Mater 1:119CrossRefGoogle Scholar
  20. 20.
    Erb U, Aust KT, Palumbo G (2002) In: Koch CC (ed) Nanostructured materials: processing, properties, and applications. William Andrew Publ., Norwich, NY, p 179Google Scholar
  21. 21.
    Koch CC (1993) NanoStructured Mater 2:109CrossRefGoogle Scholar
  22. 22.
    Koch CC (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Processing of metals and alloys, Materials science and technology: a comprehensive treatment, vol 15. VCH, Weinheim, Germany, p 193Google Scholar
  23. 23.
    Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New YorkGoogle Scholar
  24. 24.
    Eckert J, Holzer JC, Krill CE, Johnson WL (1992) J Mater Res 7:1751Google Scholar
  25. 25.
    Groza JR (2002) In: Koch CC (ed) Nanostructured materials: processing, properties, and applications. William Andrew Publ., Norwich, NY, p 115Google Scholar
  26. 26.
    Mayo MJ (1996) Int Mater Rev 41:85Google Scholar
  27. 27.
    Rack HJ, Cohen M (1970) Mater Sci Eng 6:320CrossRefGoogle Scholar
  28. 28.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  29. 29.
    Segal VM, Reznikow VI, Drobyshevkij AE, Kopylov VI (1981) Metally 1:115Google Scholar
  30. 30.
    Valiev RZ, Alexandov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5Google Scholar
  31. 31.
    Sakai G, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579CrossRefGoogle Scholar
  32. 32.
    Benavides S, Li Y, Murr LE (2000) In: Mitra RS, Semiatin SL, Suryanarayana C, Thadhani NN, Lowe TC (eds) Ultrafine grained materials. TMS, Warrendale, PA, p 155Google Scholar
  33. 33.
    Sakai G, Nankamura K, Horita Z, Langdon TG (2005) Mater Sci Eng A 406:268Google Scholar
  34. 34.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929CrossRefGoogle Scholar
  35. 35.
    Suryanarayana C (1995) Intl Mater Rev 40:41Google Scholar
  36. 36.
    Weissmuller J (1996) In: Bourell DL (ed) Synthesis and processing of nanocrystalline powder. TMS, Warrendale, PA, p 3Google Scholar
  37. 37.
    Malow TR, Koch CC (1996) In: Bourell DL (ed) Synthesis and processing of nanocrystalline powder. TMS, Warrendale, PA, p 33Google Scholar
  38. 38.
    Hofler HJ Averback RS (1990) Scripta Metall Mater 24:2401CrossRefGoogle Scholar
  39. 39.
    Boylan K, Osstrander D, Erb U, Palumbo G, Aust KT (1991) Scripta Metall Mater 25:2711CrossRefGoogle Scholar
  40. 40.
    Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143CrossRefGoogle Scholar
  41. 41.
    Gao Z Fultz B (1994) NanoStructured Mater 4:939CrossRefGoogle Scholar
  42. 42.
    Krill CE, Helfen L, Michels D, Natter H, Fitch A, Masson O, Birringer R (2001) Phys Rev Lett 86:842CrossRefGoogle Scholar
  43. 43.
    Weissmuller J (1993) NanoStructured Mater 3:261CrossRefGoogle Scholar
  44. 44.
    Weissmuller J (1994) J Mater Res 9:4Google Scholar
  45. 45.
    Kirchheim R (2002) Acta Mater., 50:413CrossRefGoogle Scholar
  46. 46.
    Liu F Kirchheim R (2004) Scripta Mater 51:521CrossRefGoogle Scholar
  47. 47.
    Gleiter H (1989) Prog Mater Sci 33:223CrossRefGoogle Scholar
  48. 48.
    Koch CC, Morris DG, Lu K, Inoue A (1999) MRS Bulletin 24:54Google Scholar
  49. 49.
    Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) Scripta Mater 49:651Google Scholar
  50. 50.
    Li H Ebrahimi F (2004) Appl Phys Lett 84:4307CrossRefGoogle Scholar
  51. 51.
    Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:091904-1CrossRefGoogle Scholar
  52. 52.
    Wang Y, Chen M, Zhou F, Ma E (2002) Nature, 419:912Google Scholar
  53. 53.
    Tellkamp VL, Melmed A, Lavernia EJ (2001) Metall Mater Trans A 32A:2335Google Scholar
  54. 54.
    Witkin D, Lee Z, Rodreguez R, Nutt S, Lavernia EJ (2003) Scripta Mater 49:297CrossRefGoogle Scholar
  55. 55.
    Shen YF, Lu L, Lu QH, Jin ZH, Lu K (2005) Scripta Mater 52:989CrossRefGoogle Scholar
  56. 56.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2005) Scripta Mater 54:251CrossRefGoogle Scholar
  57. 57.
    Rofagha R, Langer R, El AM-Sherik, Erb U, Palumbo G, Aust KT (1991) Scripta Metall Mater 25:2867CrossRefGoogle Scholar
  58. 58.
    Zeiger W, Schneider M, Scharnweber D, Worch H (1995) NanoStructured Mater 6:1013CrossRefGoogle Scholar
  59. 59.
    Vinogradov A, Mimaki T, Hashimoto S Valiev R (1999) Scripta Mater 41:319CrossRefGoogle Scholar
  60. 60.
    Lopez-HIRATA VM, Arce-Estrada EM (1997) Electrochimica Acta 42:61CrossRefGoogle Scholar
  61. 61.
    Kirchheim R, Huang XY, Cui P, Birringer R, Gleiter H (1993) NanoStructured Mater 1:167CrossRefGoogle Scholar
  62. 62.
    Tong HY, Shi FG, Lavernia EJ (1995) Scripta Metall Mater 32:511CrossRefGoogle Scholar
  63. 63.
    El Kedim O, Paris S, Phigni C, Bernard F, Gaffet E, Minir ZA (2004) Mater Sci Eng A369:49Google Scholar
  64. 64.
    Mohan P, Suryanarayana C, Desai V (2004) Proc Intl Conf Nano-Materials Kolkata. p 171Google Scholar
  65. 65.
    Youssef KM, Koch CC, Fedkiw PS (2004) Corr Sci 46:51CrossRefGoogle Scholar
  66. 66.
    Palumbo G, Mccrea JL, Erb U (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Sci Publ, p 89Google Scholar
  67. 67.
    Palumbo G, Gonzalez G, Brennenstuhl AM, Erb U, Shmayda W, Lichtenberger PC (1997) NanoStructured Mater 9:737CrossRefGoogle Scholar
  68. 68.
    Palumbo G, Erb U, Mccrea JL, Hibbard GD, Brooks I, Gonzalez F, Panagiotopoulos K (2002) AESF SUR/Fin Proc Q 204Google Scholar
  69. 69.
    Advanced Mateials and Processes, October, 2004, p 13Google Scholar
  70. 70.
    Nanomat website, www.nanomat.com/index2.htmlGoogle Scholar
  71. 71.
    Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykanov VU, Valiev RZ (2005) Appl Phys Lett 86:101907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations