Journal of Materials Science

, Volume 42, Issue 13, pp 4942–4946 | Cite as

Effect of coating of graphite particles with polyaniline base on charge transport in epoxy-resin composites

  • Michaela Pelíšková
  • Jarmila Vilčáková
  • Robert Moučka
  • Petr Sáha
  • Jaroslav Stejskal
  • Otakar QuadratEmail author


Investigations of charge transport, in epoxy resin composites of graphite particles coated with a non-conducting polyaniline-base layer, showed that particle shape and surface structure may crucially affect the percolation behaviour of the systems. In contrast to the gradual increase in the DC conductivity of composites in the range 20–52 vol.% for pure graphite particles, due to their fragmentary nature, a steep rise of several orders of magnitude in conductivity, appeared in composites of graphite particles coated with 10 wt.% of polyaniline base at a particle concentration 50 vol.%. The frequency and temperature dependences indicate that, in both cases, at the maximum loading used (52 vol.%), the obtained material had ohmic conductivity. In contrast, the conductivity of epoxy composites of graphite particles, coated with 20 wt.% of polyaniline base, only slightly increased over the whole range of particle concentrations. These findings suggest that, in the case of 10 wt.% polyaniline coating, due to the irregular surface structure, a certain amount of uncoated material is present, which enables the formation of conducting contacts with ohmic conductivity in the percolation area. The 20 wt.% polyaniline coating forms a compact non-conducting layer on the surface of the graphite particles, thus preventing electrical contact.


PANI Charge Transport Graphite Particle Epoxy Resin Composite Composite Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors wish to thank the Ministry of Education, Youth, and Sports of the Czech Republic (ME 883 and MSM 7088352101) and Grant Agency of the Academy of Sciences of the Czech Republic (A 4050313) for the financial support.


  1. 1.
    Kirkpatricks S (1973) Rev Mod Phys 45:574CrossRefGoogle Scholar
  2. 2.
    Efros AL, Shklovski BI (1976) Phys Stat Solidi B 76:475CrossRefGoogle Scholar
  3. 3.
    Carmona F, Prudhon P, Barreau F (1984) Solid State Commun 51:255CrossRefGoogle Scholar
  4. 4.
    Sherman RD, Middleman LM, Jacobs SM (1983) Polym Eng Sci 23:36CrossRefGoogle Scholar
  5. 5.
    Carmona F, Valot E, Servant L, Ricci M (1992) J Phys I (Fr) 2:503CrossRefGoogle Scholar
  6. 6.
    Lux F (1993) J Mater Sci 28:285CrossRefGoogle Scholar
  7. 7.
    Lux F (1993) Polym Eng Sci 33:334CrossRefGoogle Scholar
  8. 8.
    Tchmutin IA, Shevchenko VG, Ponomarenko AT (1998) J Polym Sci B: Polym Phys 36:1847CrossRefGoogle Scholar
  9. 9.
    Chekanov Y, Ohnogi R, Asai S, Sumita M (1998) Polym J 30:3811CrossRefGoogle Scholar
  10. 10.
    Bhattacharya SK, Chaklader ACD (1982) Polym Plast Tech Eng 19:21CrossRefGoogle Scholar
  11. 11.
    Jana PB, Chaudhuri S, Pal AK, De SK (1992) Polym Eng Sci 32:448CrossRefGoogle Scholar
  12. 12.
    Gengcheng Y, Renrui T, Xiao P (1997) Polym Compos 18:477CrossRefGoogle Scholar
  13. 13.
    Balberg I (1987) Phys Rev Lett 59:1305CrossRefGoogle Scholar
  14. 14.
    Sheng P (1980) Phys Rev B 21:2180CrossRefGoogle Scholar
  15. 15.
    Guoquan W, Peng Z (1997) Polym Eng Sci 37:96CrossRefGoogle Scholar
  16. 16.
    Sichkar VR, Briskman BA, Bukanov IG (1997) Polym Sci A 39:720Google Scholar
  17. 17.
    Bergman DJ, Imry Y (1977) Phys Rev Lett 39:1222CrossRefGoogle Scholar
  18. 18.
    Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50:77CrossRefGoogle Scholar
  19. 19.
    Scher RJ, Zallen J (1970) J Chem Phys 53:3759CrossRefGoogle Scholar
  20. 20.
    Yang G (1997) Polym Compos 18:484CrossRefGoogle Scholar
  21. 21.
    Vilčáková J, Sáha P, Křesálek V, Quadrat O (2000) Synth Met 113:83CrossRefGoogle Scholar
  22. 22.
    Paligová M, Vilčáková J, Sáha P, Křesálek V, Stejskal J, Quadrat O (2004) Physica A 335:421CrossRefGoogle Scholar
  23. 23.
    Vilčáková J, Sáha P, Quadrat O (2002) Eur Pol J 38:2343CrossRefGoogle Scholar
  24. 24.
    Ryvkina NG, Tchmutin I, Vilčáková J, Pelíšková M, Sáha P (2005) Synth Met 148:141CrossRefGoogle Scholar
  25. 25.
    Tchmutin I, Ryvkina NG, Soloviova AB, Kedrina NF, Timofieva VA, Rozhkova N, McQueen D (2004) Rus J Pol Sci V46:1Google Scholar
  26. 26.
    Vilčáková J, Sáha P, Hausnerová B, Quadrat O (2002) Polymer Composites 23:742Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michaela Pelíšková
    • 1
  • Jarmila Vilčáková
    • 1
  • Robert Moučka
    • 1
  • Petr Sáha
    • 1
  • Jaroslav Stejskal
    • 2
  • Otakar Quadrat
    • 1
    Email author
  1. 1.Faculty of TechnologyTomas Bata University in ZlínZlinCzech Republic
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations